

MOSFET - Power, Single N-Channel, PQFN8 100 V, 7.6 mΩ, 110 A

NTMFS7D8N10G

Features

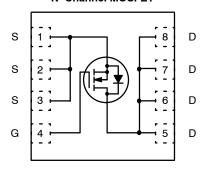
- Wide SOA for Linear Mode Operation
- Low R_{DS(on)} to Minimize Conduction Loss
- High Peak UIS Current Capability for Ruggedness
- Small Footprint (5x6 mm) for Compact Design
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

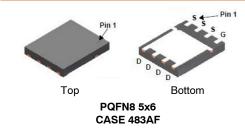
Typical Applications

• 48 V Hot Swap System, Load Switch, Soft Start, E-Fuse

MAXIMUM RATINGS (T_J = 25°C, Unless otherwise specified)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	100	V
Gate-to-Source Voltag	е		V_{GS}	±20	V
Continuous Drain Current R _{θJC} (Note 2)	Steady - asso		I _D	110	Α
Power Dissipation R _{θJC} (Note 2)	State	T _C = 25°C	P _D	187	W
Continuous Drain Current R _{0JA} (Note 1, 2)	Steady State T _A = 25°C		I _D	14	Α
Power Dissipation R _{θJA} (Note 1, 2)	State		P _D	3	W
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	1656	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			I _S	155	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{AV} = 70 A, L = 0.1 mH)			E _{AS}	245	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

1

V _{SSS}	R _{SS(ON)} MAX	I _D MAX
100 V	7.6 mΩ @ 10 V	110 A

N-Channel MOSFET

MARKING DIAGRAM

7D8N10 = Specific Device Code A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Max	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State	0.8	°C/W
$R_{ hetaJA}$	Junction-to-Ambient - Steady State	50	

Def Characteristrics Defin Loss V_{(BR)DSS} V_{GS} = 0 V, I_D = 250 μA 100 100 V_{CRD}	ELECTRICAL CHARACTERISTICS	3 (T _J = 25°C un	ess otherwise noted)					
Drain - to - Source Breakdown Voltage V _{(BR)DSS} V	Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Drain – to — Source Breakdown Voltage Temperature Coefficient V(BR)DSS / TJ $I_D = 250 \mu A$, ref to $25^{\circ}C$ 87.9 mV/C Zero Gate Voltage Drain Current IDSS $V_{GS} = 0 V$, $V_{DS} = 80 V$ $T_J = 25^{\circ}C$ 1 μA Gate – to — Source Leakage Current IGSS VDS = 0 V, VDS = $\pm 20 V$ $\pm 100 O$ μA OR CHARACTERISTICS (Note 3) Gate Threshold Voltage VGS(TH) VGS = $\pm 100 V$ $\pm 100 O$	OFF CHARACTERISTICS							
Temperature Coefficient Topic T	Drain – to – Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		100			V
Section	Drain – to – Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA, ref t	o 25°C		87.9		mV/°C
Section	Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 80 V	T _J = 25°C				μΑ
Continue	Gato to Source Leakage Current	1						nΛ
Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 254 μA 2.0 4.0 V Negative Threshold Temperature Coefficient VGS(TH) / TJ ID = 254 μA, ref to 25°C -9.4 mV/°C Drain – to – Source On Resistance RDS(on) VGS = 10 V, ID = 48 A 5.6 7.6 mQ Forward Transconductance 9FS VDS = 5 V, ID = 48 A 37 S S Gate – Resistance RG TA = 25°C 0.33 Ω Ω CHARGES & CAPACITANCES Input Capacitance CISS VGS = 0 V, I = 1 MHz, VDS = 50 V 6180 pF Output Capacitance COSS VGS = 0 V, I = 1 MHz, VDS = 50 V 624.5 PF Reverse Transfer Capacitance CRSS 99 nC nC Gate - to – Drain Charge QGB VGS = 10 V, VDS = 50 V, ID = 48 A 26 P Plateau Voltage VGB 40 40 V V WITCHING CHARACTERISTICS (Note 3) VGS = 10 V, VDS = 50 V, ID = 48 A 32 ns ns PAIL Time t _I		IGSS	v _{DS} = 0 v, v _{GS} =	1 120 V			±100	IIA
Negative Threshold Temperature VGS(TH) TJ ID = 254 μA, ref to 25°C -9.4 mV/FC Coefficient			\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	254 . 4	0.0		4.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$v_{GS} = v_{DS}$, $I_D = 2$	254 μΑ	2.0		4.0	
Forward Transconductance g_{FS} $V_{DS} = 5 \text{ V}$, $I_D = 48 \text{ A}$ 37 S Gate-Resistance R_G $T_A = 25^{\circ}C$ 0.33 Ω CHARGES & CAPACITANCES Input Capacitance C_{ISS} $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$, $V_{DS} = 50 \text{ V}$ 6180 pF Output Capacitance C_{ISS} $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$, $V_{DS} = 50 \text{ V}$ 624.5 99 Total Gate Charge Q_{GS} $Q_{G(TOT)}$ 92 nC Gate-to-Source Charge Q_{GS} Q_{GD} 35 26 Plateau Voltage V_{GS} $V_{CS} = 10 \text{ V}$, $V_{DS} = 50 \text{ V}$, $I_D = 48 \text{ A}$ 26 V WITCHING CHARACTERISTICS (Note 3) $V_{CS} = 10 \text{ V}$, $V_{DS} = 50 \text{ V}$		V _{GS(TH)} [/] T _J	I _D = 254 μA, ref t	o 25°C		-9.4		mV/°C
Comparison Co	Drain - to - Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D =	: 48 A		5.6	7.6	mΩ
CHARGES & CAPACITANCES Input Capacitance C_{ISS} $V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}, V_{DS} = 50 \text{ V}$ 6180 pF Output Capacitance C_{OSS} $V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}, V_{DS} = 50 \text{ V}$ 624.5 pF Reverse Transfer Capacitance C_{RSS} 99 nC Total Gate Charge Q_{GITOT} 92 nC Gate—to—Source Charge Q_{GS} 35 26 Plateau Voltage V_{GP} 26 V WITCHING CHARACTERISTICS (Note 3) Turn—On Delay Time $t_{d(ON)}$ 32 ns Rise Time t_r $V_{GS} = 10 \text{ V}, V_{DS} = 50 V$	Forward Transconductance	9 _{FS}	V _{DS} = 5 V, I _D = 48 A			37		S
Disput Capacitance	Gate-Resistance	R_{G}	T _A = 25°C			0.33		Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CHARGES & CAPACITANCES							
Reverse Transfer Capacitance C _{RSS} 99 10 10 10 10 10 10 10	Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 50 V			6180		pF
Total Gate Charge $Q_{G(TOT)}$ Q_{GS} Q_{GS	Output Capacitance	C _{OSS}				624.5		-
Gate-to-Source Charge Q _{GS} Q _{GD} V _{GS} = 10 V, V _{DS} = 50 V, I _D = 48 A 26 26 26 26 26 26 26	Reverse Transfer Capacitance	C _{RSS}				99		
	Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 50 V, I _D = 48 A			92		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Source Charge	Q _{GS}				35		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Drain Charge	Q_{GD}				26		1
Turn – On Delay Time $t_{d(ON)}$ $V_{GS} = 10 \text{ V}, V_{DS} = 50 \text{ V}, V_{DS} = 48 \text{ A}, V_{DS} = 48$	Plateau Voltage	V_{GP}				6		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTICS (Note	3)						·•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn – On Delay Time	t _{d(ON)}				32		ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		Voc = 10 V Vpc	- 50 V		24		
Fall Time $t_f \hspace{1cm} 14 \hspace{1cm} \\ \textbf{DRAIN-SOURCE DIODE CHARACTERISTICS} \\ \hline Forward Diode Voltage V_{SD} \hspace{1cm} V_{GS} = 0 \hspace{1cm} V, \hspace{1cm} I_S = 48 \hspace{1cm} A \hspace{1cm} \\ \hline V_{GS} = 0 \hspace{1cm} V, \hspace{1cm} I_S = 48 \hspace{1cm} A \hspace{1cm} \\ \hline V_{GS} = 0 \hspace{1cm} V, \hspace{1cm} I_S = 25 \hspace{1cm} C \hspace{1cm} \\ \hline V_{J} = 125 \hspace{1cm} C \hspace{1cm} \\ \hline $	Turn – Off Delay Time	t _{d(OFF)}				51		7
Forward Diode Voltage $V_{SD} = V_{SS} = 0 \text{ V, } I_S = 48 \text{ A} $ $V_{GS} = 0 \text{ V, } I_S = 48 \text{ A} $ $T_J = 25^{\circ}\text{C} $	Fall Time					14		1
$V_{GS} = 0 \text{ V, } I_S = 48 \text{ A} $ $T_J = 125^{\circ}\text{C} $ 0.73 Reverse Recovery Time $ t_{RR} $ $V_{GS} = 0 \text{ V, } dI_S/dt = 300 \text{ A/μs}, $ $I_S = 24 \text{ A} $ $177 $ nC Reverse Recovery Time $ t_{RR} $ $V_{GS} = 0 \text{ V, } dI_S/dt = 1000 \text{ A/μs}, $ $33 $ ns	DRAIN-SOURCE DIODE CHARACTER	ISTICS						
$V_{GS} = 0 \text{ V, } I_S = 48 \text{ A} $ $T_J = 125^{\circ}\text{C} $ 0.73 Reverse Recovery Time $ t_{RR} $ $V_{GS} = 0 \text{ V, } dI_S/dt = 300 \text{ A/μs}, $ $I_S = 24 \text{ A} $ $177 $ nC Reverse Recovery Time $ t_{RR} $ $V_{GS} = 0 \text{ V, } dI_S/dt = 1000 \text{ A/μs}, $ $33 $ ns	Forward Diode Voltage	V_{SD}	Voc = 0 V lo = 48 A	T _J = 25°C		0.84		V
Reverse Recovery Charge Q_{RR} $I_S = 24 \text{ A}$ 177 nC Reverse Recovery Time t_{RR} $V_{GS} = 0 \text{ V, dI}_S/\text{dt} = 1000 \text{ A/µs},$ 33 ns	-				0.73		1	
Reverse Recovery Charge Q_{RR} $I_S = 24 \text{ A}$ 177 nC Reverse Recovery Time t_{RR} $V_{GS} = 0 \text{ V, dI}_S/\text{dt} = 1000 \text{ A/µs},$ 33 ns	Reverse Recovery Time	t _{RR}	Voo - 0 V dlo/dt - 1	300 A/us		42		ns
Reverse Recovery Time t_{RR} $V_{GS} = 0 \text{ V, } dI_S/dt = 1000 \text{ A/}\mu\text{s,}$ 33 ns	·		$V_{GS} = 0 \text{ V, } \alpha_{IS}/\alpha_{I} = 300 \text{ A/}\mu\text{s},$ $I_{S} = 24 \text{ A}$			177		nC
V _G S = 0 V, αις/αι = 1000 / γ(ιο,	Reverse Recovery Time		\\ 0\\ d\ \d\ 4 1000 \\			33		ns
	Reverse Recovery Charge					411		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

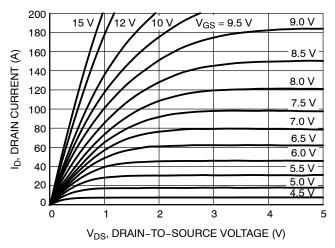


Figure 1. On-Region Characteristics

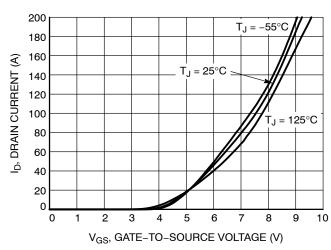


Figure 2. Transfer Characteristics

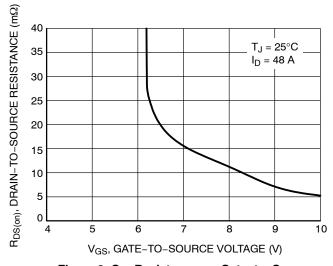


Figure 3. On-Resistance vs. Gate-to-Source Voltage

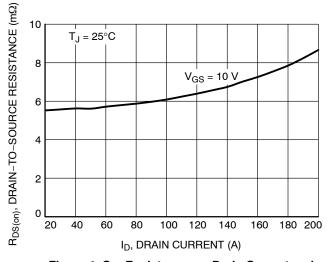


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

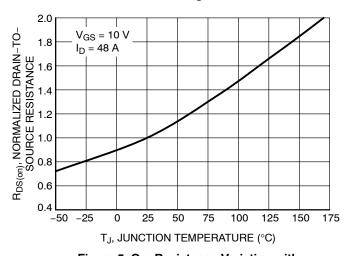


Figure 5. On–Resistance Variation with Temperature

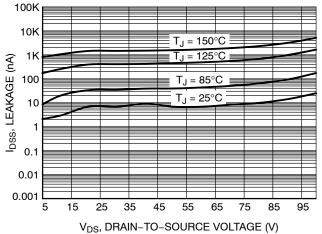


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

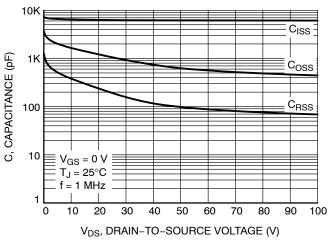


Figure 7. Capacitance Variation

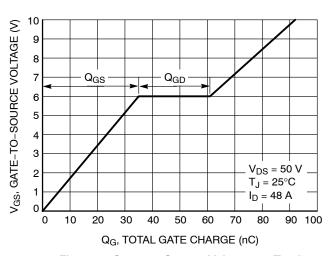


Figure 8. Gate-to-Source Voltage vs. Total Charge

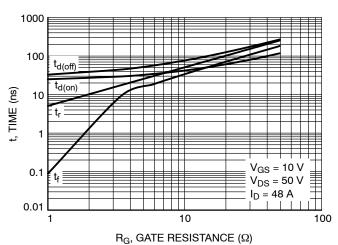


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

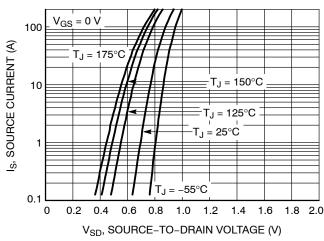


Figure 10. Diode Forward Voltage vs. Current

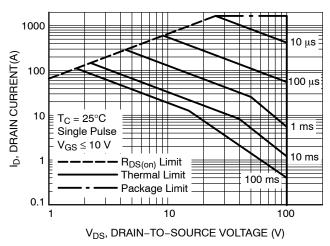


Figure 11. Maximum Rated Forward Biased Safe Operating Area

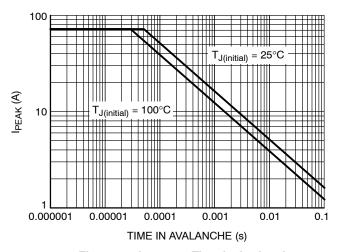


Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS

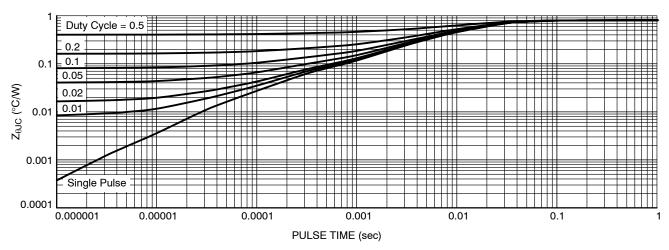
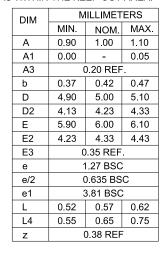


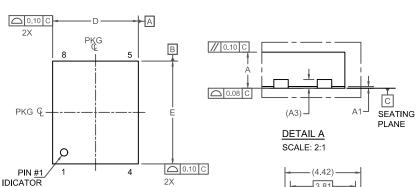
Figure 13. Thermal Characteristics

ORDERING INFORMATION

Device	Device Marking	Package	Shipping [†]
NTMFS7D8N10GTWG	7D8N10	PQFN8 5x6 (Pb-Free/Halogen Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

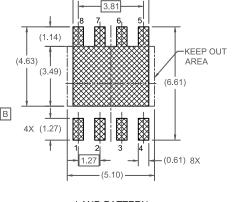



PQFN8 5X6, 1.27P CASE 483AF ISSUE A

DATE 06 JUL 2021

NOTES: UNLESS OTHERWISE SPECIFIED

- A) PACKAGE STANDARD REFERENCE: JEDEC MO-240, ISSUE A, VAR. AA,
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009.
- E) IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.



SEE DETAIL A

	SIDE VIE	W			
2 4X 1 4X 1 4X 1 2X	e1		0.00	C	AII
L4	8 e/2	5	L		

BOTTOM VIEW

TOP VIEW

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13656G	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PQFN8 5X6, 1.27P		PAGE 1 OF 1	

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales