onsemi

MOSFET - Power, Single N-Channel, SO-8FL 30 V, 52 A NTMFS4C08N

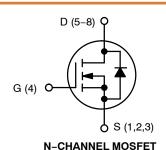
Features

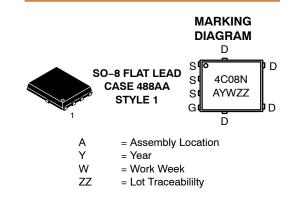
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- CPU Power Delivery
- DC-DC Converters

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)


Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Voltage		V _{GS}	±20	V	
Continuous Drain Current R _{θJA} (Note 2)		$T_A = 25^{\circ}C$ $T_A = 80^{\circ}C$	۱ _D	16.4 12.3	A
Power Dissipation $R_{\theta JA}$ (Note 2)		$T_A = 25^{\circ}C$	PD	2.51	W
Continuous Drain Current $R_{\theta JA} \le 10 \text{ s}$		$T_A = 25^{\circ}C$ $T_A = 80^{\circ}C$	۱ _D	25.3 19.0	A
(Note 2) Power Dissipation $R_{\theta JA} \le 10 \text{ s}$ (Note 2)	Steady	$T_A = 25^{\circ}C$	P _D	6.0	W
Continuous Drain	State	T _A = 25°C	Ι _D	9.0	А
Current R _{0JA} (Note 3)		T _A = 80°C		6.8	
Power Dissipation $R_{\theta JA}$ (Note 3)		$T_A = 25^{\circ}C$	PD	0.76	W
Continuous Drain Current R _{θJC} (Note 2)		T _C = 25°C T _C =80°C	۱ _D	52 39	А
Power Dissipation $R_{\theta JC}$ (Note 2)		$T_{\rm C} = 80^{\circ}{\rm C}$ $T_{\rm C} = 25^{\circ}{\rm C}$	P _D	25.5	W
Pulsed Drain Current	T _A = 25°C, t _p = 10 μs		I _{DM}	144	А
Pulsed Source Current (Body Diode)	T _A = 25°	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		560	A
Current Limited by Pac	kage	T _A = 25°C	I _{Dmax}	80	А
Operating Junction and Storage Temperature Range			T _J , T _{STG}	–55 to +150	°C
Source Current (Body Diode)			I _S	23	А
Drain to Source DV/DT			dV/d _t	7.0	V/ns
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{GS} = 10 V, I _L = 29 A _{pk} , L = 0.1 mH, R _{GS} = 25 Ω) (Note 4)			E _{AS}	42	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.

- 3. Surface-mounted on FR4 board using the minimum recommended pad size.
- 4. This is the absolute maximum rating. Parts are 100% tested at $T_J = 25^{\circ}C$,
- V_{GS} = 10 V, I_L = 21 Apk, E_{AS} = 22 mJ.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	5.8 mΩ @ 10 V	52 A
30 V	8.5 mΩ @ 4.5 V	52 A

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS4C08NT1G	SO-8 FL (Pb-Free)	1500 / Tape & Reel

DISCONTINUED (Note 1)

SO-8 FL	5000 /
(Pb-Free)	Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

 DISCONTINUED: This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on <u>www.onsemi.com</u>.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ ext{ heta}JC}$	4.9	
Junction-to-Ambient - Steady State (Note 5)	$R_{\theta JA}$	49.8	°C/W
Junction-to-Ambient - Steady State (Note 6)	$R_{\theta JA}$	164.6	°C/W
Junction-to-Ambient – (t \leq 10 s) (Note 5)	$R_{ hetaJA}$	21.0	

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

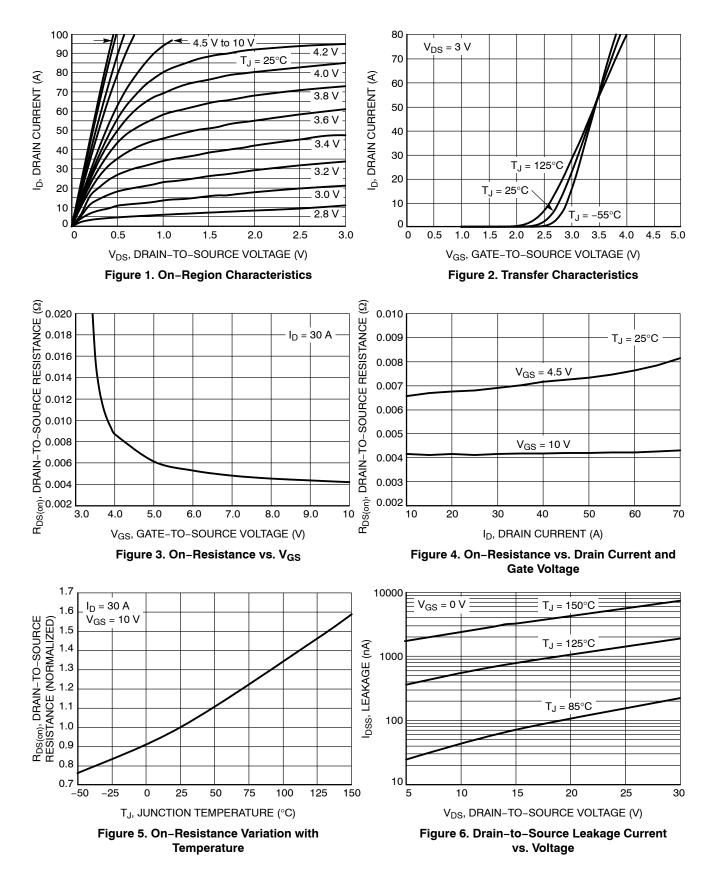
-	Test Condition		Min	Тур	Мах	Unit
V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		30			V
V _{(BR)DSSt}	V_{GS} = 0 V, $I_{D(aval)}$ = 8.4 A, T_{case} = 25°C, $t_{transient}$ = 100 ns		34			V
V _{(BR)DSS} / T _J				13.8		mV/°C
I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	$T_J = 25^{\circ}C$			1.0	
		$T_J = 125^{\circ}C$			10	μA
I _{GSS}	$V_{DS} = 0 V, V_{GS}$	_S = ±20 V			±100	nA
V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$		1.3		2.1	V
V _{GS(TH)} /T _J				4.9		mV/°C
20(0)	V _{GS} = 10 V	I _D = 18 A		4.6	5.8	mΩ
	V _{GS} = 4.5 V	I _D = 30 A		6.8	8.5	
9 _{FS}	V _{DS} = 1.5 V, I _D = 15 A			42		S
R _G	T _A = 25°C		0.3	1.0	2.0	Ω
C _{ISS}				1113	1670	
C _{OSS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 15 V			702		pF
C _{RSS}				39		
C _{RSS} /C _{ISS}	V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz			0.035		
Q _{G(TOT)}				8.4		
Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 30 A			1.8		nC
Q _{GS}				3.5		
Q _{GD}	1			3.3		
V _{GP}	1			3.4		V
	V_{GS} = 10 V, V_{DS} = 15 V; I_{D} = 30 A			18.2		nC
	V(BR)DSSt V(BR)DSSt TJ IDSS IGSS VGS(TH) VGS(TH)/TJ RDS(on) 9FS RG 0FS RG CISS CRSS CRSS CRSS CRSS CRSS CRSS CRSS	$\begin{tabular}{ c c c c c c c c c c c } \hline V_{(BR)DSSt} & V_{GS} = 0 \ V, \ I_{D(av}\\ T_{case} = 25^\circ C, \ t_{trans} \\ \hline V_{(BR)DSS'} \\ \hline I_{DS} & V_{GS} = 0 \ V, \\ V_{DS} = 24 \ V \\ \hline I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} \\ \hline V_{GS}(TH) & V_{GS} = 0 \ V, \ V_{GS} \\ \hline V_{GS}(TH)/T_J & \\ \hline V_{GS}(TH)/T_J & \\ \hline V_{GS}(TH)/T_J & \\ \hline R_{DS}(on) & V_{GS} = 10 \ V \\ \hline V_{GS} = 4.5 \ V \\ \hline SFS & V_{DS} = 1.5 \ V, \ I \\ \hline R_{G} & T_A = 25 \\ \hline \hline C_{ISS} & \\ \hline C_{RSS} & \\ \hline C_{RSS}/C_{ISS} & V_{GS} = 0 \ V, \ f = 1 \ MH \\ \hline C_{RSS} & \\ \hline Q_{G}(TTH) & \\ \hline Q_{G}(TH) & \\ \hline Q_{GS} & \\ \hline V_{GS} = 4.5 \ V, \ V_{DS} = 1 \\ \hline \end{tabular}$	$\begin{array}{ c c c c c } V_{(BR)DSSt} & V_{GS} = 0 \ V, \ I_{D}(aval) = 8.4 \ A, \\ T_{case} = 25^{\circ}C, \ t_{transient} = 100 \ ns \end{array}$ $\begin{array}{ c c c c } V_{(BR)DSS'} & T_{J} = 25^{\circ}C \\ \hline V_{DS} = 24 \ V & T_{J} = 25^{\circ}C \\ \hline T_{J} = 125^{\circ}C \\ \hline T_{J} = 125^{\circ}C \\ \hline I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = \pm 20 \ V \\ \hline V_{GS}(TH) & V_{GS} = 0 \ V, \ V_{GS} = \pm 20 \ V \\ \hline V_{GS}(TH)/T_{J} & H_{DS}(on) & V_{GS} = 10 \ V & I_{D} = 18 \ A \\ \hline V_{GS} = 4.5 \ V & I_{D} = 30 \ A \\ \hline V_{GS} = 0 \ V, \ I_{D} = 15 \ A \\ \hline R_{G} & T_{A} = 25^{\circ}C \\ \hline \hline C_{ISS} & V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 15 \ V \\ \hline C_{RSS} & V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 15 \ V, \ f = 1 \ MHz \\ \hline Q_{G}(TT) & Q_{G}(TH) \\ \hline Q_{GS} & V_{GS} = 4.5 \ V, \ V_{DS} = 15 \ V, \ f = 1 \ MHz \\ \hline Q_{GG} & V_{GS} = 4.5 \ V, \ V_{DS} = 15 \ V; \ I_{D} = 30 \ A \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Turn-On Delay Time t_{d(ON)} 9.0 **Rise Time** t_r 33 $\begin{array}{l} \mathsf{V}_{GS} = 4.5 \; \mathsf{V}, \, \mathsf{V}_{DS} = 15 \; \mathsf{V}, \\ \mathsf{I}_{D} = 15 \; \mathsf{A}, \, \mathsf{R}_{G} = 3.0 \; \Omega \end{array}$ ns Turn-Off Delay Time 15 $t_{d(OFF)}$ Fall Time 4.0 t_f

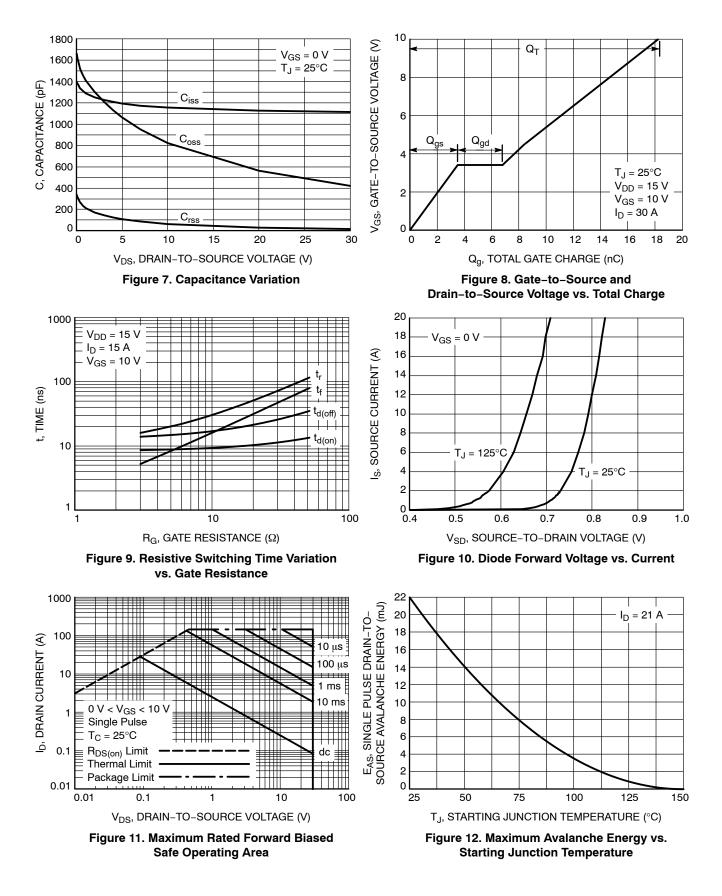
7. Pulse Test: pulse width \leq 300 $\mu s,$ duty cycle \leq 2%.

8. Switching characteristics are independent of operating junction temperatures.

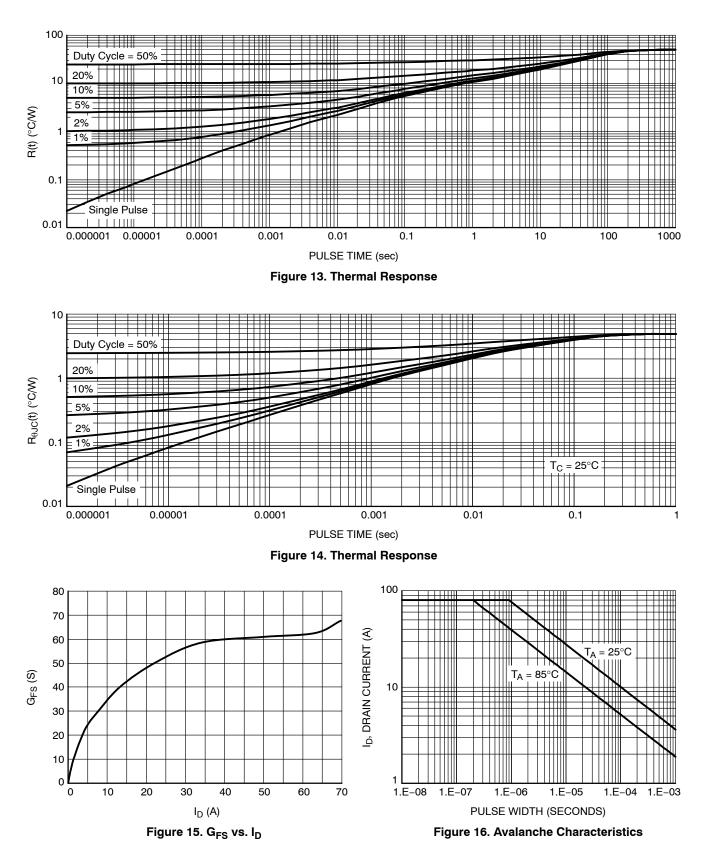
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

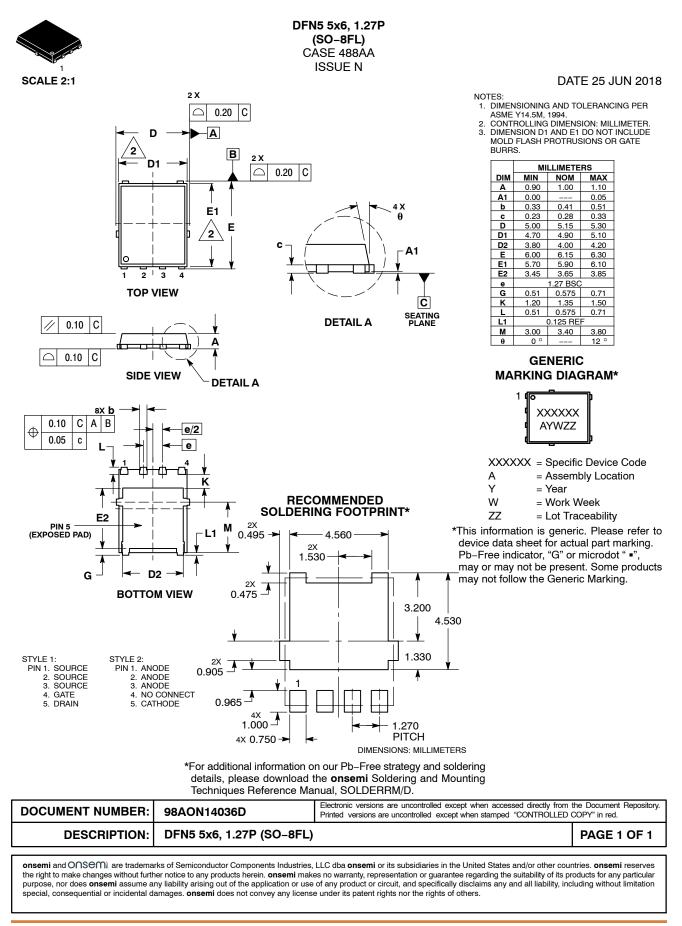

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (No	te 8)	•					
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω			7.0		ns
Rise Time	t _r				26		
Turn-Off Delay Time	t _{d(OFF)}				19		
Fall Time	t _f				3.0		
DRAIN-SOURCE DIODE CHARACTE	RISTICS	• •					
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 10 A	$T_J = 25^{\circ}C$		0.79	1.1	
			T _J = 125°C		0.66		V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/µs, I _S = 30 A			28.3		
Charge Time	t _a				14.5		ns
Discharge Time	t _b				13.8		
Reverse Recovery Charge	Q _{RR}			15.3		nC	

7. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.


8. Switching characteristics are independent of operating junction temperatures.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>