onsemi

MOSFET – N-Channel Shielded Gate POWERTRENCH[®]

150 V, 61 A, 14 m Ω

NTMFS015N15MC

Features

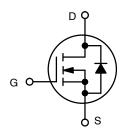
- Small Footprint (5 x 6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low QG and Capacitance to Minimize Driver Losses
- 100% UIL Tested
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Synchronous Rectification
- AC-DC and DC-DC Power Supplies
- AC-DC Adapters (USB PD) SR
- Load Switch

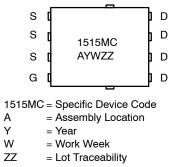
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Symbol	Parameter			Value	Unit
V _{DSS}	Drain-to-Source Voltage			150	V
V _{GS}	Gate-to-Source Voltage	Э		±20	V
Ι _D	Continuous Drain Current R _{θJC} (Note 2)	Steady	т ос%О	61	A
PD	Power Dissipation $R_{\theta JC}$ (Note 2)	State	T _C = 25°C	108.7	W
Ι _D	Continuous Drain Current R _{θJA} (Notes 1, 2)	Steady State	T _A = 25°C	9.2	A
PD	Power Dissipation $R_{\theta JA}$ (Notes 1, 2)	Sidle		2.5	W
I _{DM}	Pulsed Drain Current	T _C = 25°	°C, t _p = 100 μs	302	А
T _J , T _{stg}	Operating Junction and Storage Temperature Range			–55 to +150	°C
E _{AS}	Single Pulse Drain-to-Source Avalanche Energy (I _L = 10 A _{pk} , L = 3 mH)			150	mJ
ΤL	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using a 1 in², 2 oz. Cu pad.

The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
150 V	14 mΩ @ 10 V	61 A

N-CHANNEL MOSFET

MARKING DIAGRAM

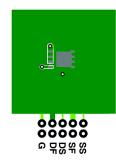
ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS015N15MC	Power 56	3,000 /
(Pb-Free/Halogen Free)	(PQFN8)	Tape & Reel

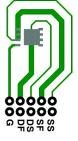
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, <u>BRD8011/D</u>.

THERMAL RESISTANCE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$R_{\theta JC}$	Junction-to-Case - Steady State (Note 2)	1.15	°C/W
$R_{\theta JA}$	Junction-to-Ambient - Steady State (Notes 1, 2)	50	

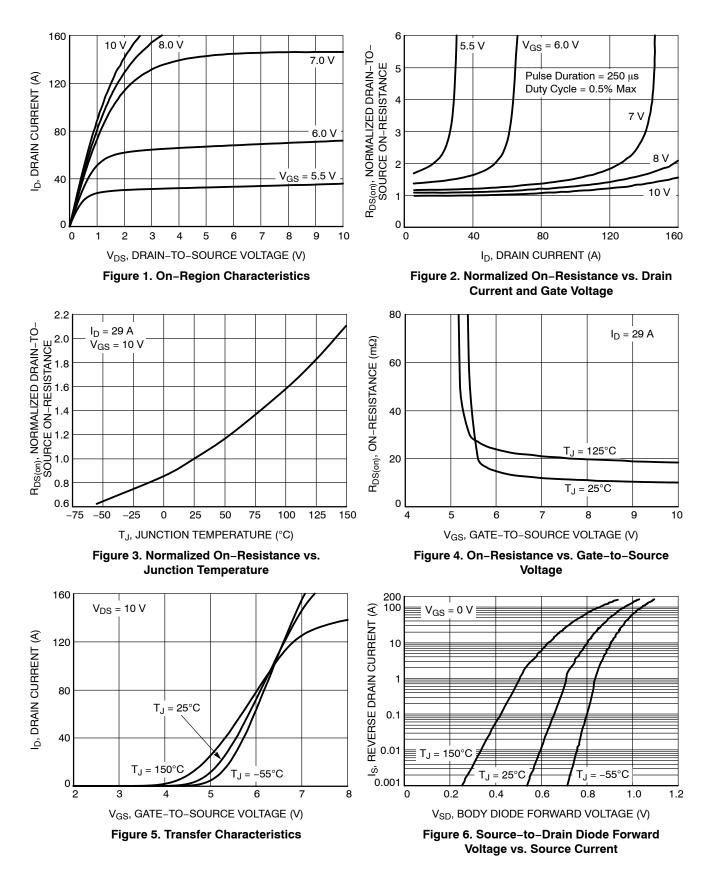

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS	-		-	-	-	-
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA		150			V
V _{(BR)DSS} / T _J	Drain-to-Source Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, ref to $25^{\circ}C$			109		mV/° C
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 120 V	T _J = 25°C			1.0	μΑ
I _{GSS}	Gate-to-Source Leakage Current	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA
ON CHARA	CTERISTICS			-	-		
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D =$	= 162 μA	2.5		4.5	V
V _{GS(TH)} /T _J	Negative Threshold Temperature Coefficient	I _D = 162 μA, ref	to 25°C		-7.6		mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V, I _D	= 29 A		10.2	14	mΩ
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 8 V, I _D	= 15 A		11.1	16.2	mΩ
9 FS	Forward Transconductance	V _{DS} = 10 V, I _D	= 29 A		56		S
CHARGES,	CAPACITANCES & GATE RESISTANCE						
C _{ISS}	Input Capacitance	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 75 V			2120		
C _{OSS}	Output Capacitance				595		pF
C _{RSS}	Reverse Transfer Capacitance				10.5		
R _G	Gate-Resistance				0.6	1.2	Ω
Q _{G(TOT)}	Total Gate Charge				27		
Q _{G(TH)}	Threshold Gate Charge	V _{GS} = 10 V, V _{DS} = 75 V; I _D = 29 A			7		nC
Q _{GS}	Gate-to-Source Charge				11		
Q _{GD}	Gate-to-Drain Charge				4		
V _{GP}	Plateau Voltage				5.5		V
Q _{OSS}	Output Charge	V _{DD} = 75 V, V _G	_{is} = 0 V		66		nC
SWITCHING	G CHARACTERISTICS (Note 3)	•					
t _{d(ON)}	Turn–On Delay Time				16		
t _r	Rise Time	V _{CS} = 10 V. V _{DC}	s = 75 V.		5		
t _{d(OFF)}	Turn–Off Delay Time	V _{GS} = 10 V, V _{DD} I _D = 29 A, R _G	= 6 Ω		21		ns
t _f	Fall Time				4		1
	URCE DIODE CHARACTERISTICS	•					
V_{SD}	Forward Diode Voltage	$V_{GS} = 0 V,$ $I_S = 29 A$	$T_J = 25^{\circ}C$		0.86	1.2	V
t _{RR}	Reverse Recovery Time	V _{GS} = 0 V, V _{DD} = 75 V dI _S /dt = 300 A/μs, I _S = 29 A			49		ns
Q _{RR}	Reverse Recovery Charge				197		nC
t _{RR}	Reverse Recovery Time	V _{GS} = 0 V, V _{DD}	= 75 V		34		ns
Q _{RR}	Reverse Recovery Charge	dl _S /dt = 1000 A/μs	, I _S = 29 A		345		nC

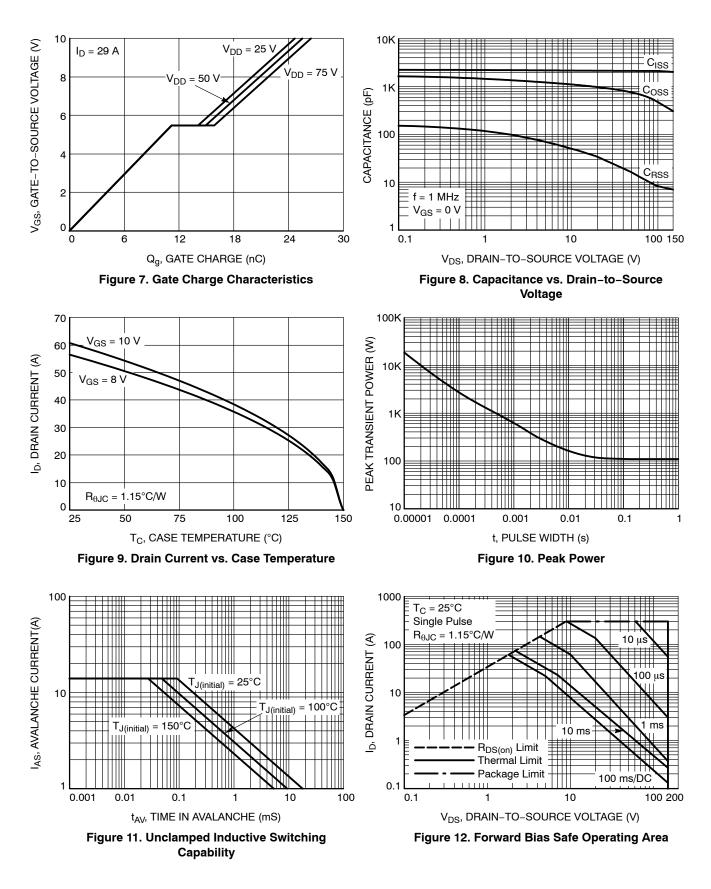

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

- Switching characteristics are independent of operating junction temperatures.
 R_{θJA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. R_{θCA} is determined by the user's board design.



a) 50°C/W when mounted on a 1 in² pad of 2 oz copper.

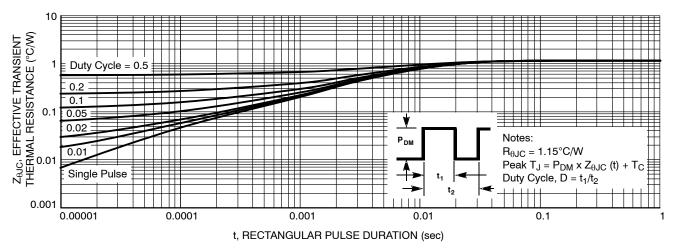


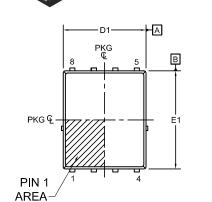
b) $125^{\circ}C/W$ when mounted on a minimum pad of 2 oz copper.

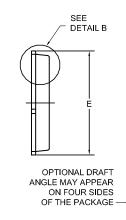
TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

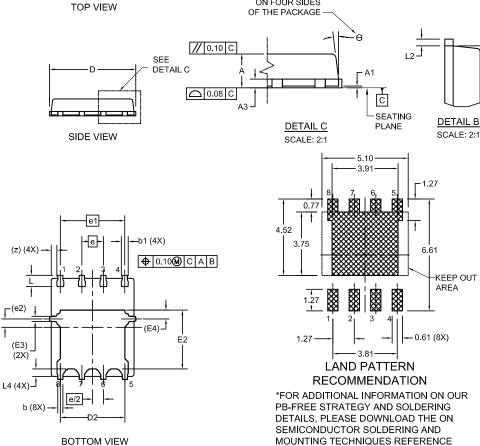
TYPICAL CHARACTERISTICS (continued)




Figure 13. Transient Thermal Impedance


POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

PQFN8 5X6, 1.27P CASE 483AE ISSUE C


DATE 21 JAN 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED
- PADS AS WELL AS THE TERMINALS. 4. DIMENSIONS D1 AND E1 DO NOT INCLUDE
- MOLD FLASH, PROTRUSIONS, OR GATE BURRS. 5. SEATING PLANE IS DEFINED BY THE
- TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
- 6. IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.

1 0						
	DIM	MILLIMETERS				
	DIN	MIN.	NOM.	MAX.		
	А	0.90	1.00	1.10		
	A1	0.00	-	0.05		
	b	0.21	0.31	0.41		
	b1	0.31	0.41	0.51		
	A3	0.15	0.25	0.35		
	D	4.90	5.00	5.20		
	D1	4.80	4.90	5.00		
	D2	3.61	3.82	3.96		
	Е	5.90	6.15	6.25		
	E1	5.70	5.80	5.90		
	E2	3.38	3.48	3.78		
	E3	(.30 REF			
	E4	().52 REF			
	е		1.27 BSC			
	e/2	(0.635 BS	С		
	e1	3.81 BSC				
	e2	0.50 REF				
	L	0.51	0.66	0.76		
	L2	0.05	0.18	0.30		
	L4	0.34	0.44	0.54		
	z	0.34 REF				
	θ	0°	-	12°		
		1				

DOCUMENT NUMBER:	98AON13655G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION: PQFN8 5X6, 1.27P PAGE 1 C			PAGE 1 OF 1		
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

MANUAL, SOLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>