ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

MOSFET - Power, Dual N- & P-Channel, SO8FL

100 V, 13.4 m Ω , 60 A, -100 V, 36 mΩ, -36 A

NTMFC013NP10M5L

- Small Footprint (5 x 6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

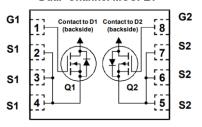
- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- Motor Drive, Home Automation

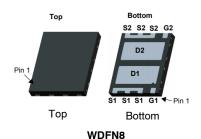
MAXIMUM RATINGS (T_J = 25°C, Unless otherwise specified)

Parameter			Symbol	Q1	Q2	Unit
Drain-to-Source Breakdown Voltage			V _{(BR)DSS}	100	-100	V
Gate-to-Source	Voltage		V_{GS}	±20	±20	V
Continuous Drain Current R ₀ JC (Note 2)	Steady State	T _C = 25°C	Ι _D	60	-36	Α
Power Dissipation $R_{\theta JC}$ (Note 2)			P _D	102	102	W
Continuous Drain Current R _{θJA} (Notes 1, 2)	Steady State	T _A = 25°C	Ι _D	9	-5	Α
Power Dissipation R _{θJA} (Notes 1, 2)			P _D	2.7	2.7	W
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	208	-184	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to	+150	°C
Source Current (Body Diode)			Is	85	85	Α
Single Pulse Drain-to-Source Avalanche Energy (I _L = 17.9/18.4 A, L = 1 mH)			E _{AS}	161	169	mJ
Lead Temperatu Soldering Purpo (1/8" from case t	ses	g Reflow for	T _L	260	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- 2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.




ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	13.4 mΩ @ 10 V	60 A
–100 V	36 mΩ @ 10 V	–36 A

Dual-Channel MOSFET

CASE 511DC

MARKING DIAGRAM

&Y = ON Semiconductor Logo = Assembly Plant Code &Z &2 = Numeric Date Code

= Lot Code ٨K

13NP10M5L = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet

THERMAL CHARACTERISTICS

Symbol	Parameter	Q1	Q2	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State (Note 3)	1.46	1.46	°C/W
$R_{ hetaJA}$	Junction-to-Ambient - Steady State (Note 3)	55	55	

^{3.} The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ELECTRICAL CHARACTERISTICS (Q1, N-CHANNEL) (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA, ref to 25°C			60		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	.,	T _J = 25°C			1	μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$ $T_{J} = 125^{\circ}\text{C}$				100	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±20 V				±100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 158 \mu A$		1.0	1.7	3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} / T _J	I _D = 158 μA, ref to	25°C		8.85		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 8$	3.5 A		9.16	13.4	mΩ
		V _{GS} = 4.5 V, I _D = 6.8 A			15.2	35.0	1
Forward Transconductance	g _{FS}	$V_{DS} = 5 \text{ V}, I_{D} = 8.5 \text{ A}$			15.5		S
Gate-Resistance	R_{G}	T _A = 25°C			1.57		Ω
CHARGES & CAPACITANCES						•	•
Input Capacitance	C _{ISS}				1345		pF
Output Capacitance	coss	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 50 V			307		1
Reverse Transfer Capacitance	C _{RSS}				17.5		1
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 50 V, I _D = 8.5 A			12		nC
Threshold Gate Charge	Q _{G(TH)}				2.4		
Gate-to-Source Charge	Q _{GS}				4.7		1
Gate-to-Drain Charge	$Q_{\overline{GD}}$				5		
Total Gate Charge	Q _{G(TOT)}	V 40VVV 50V			23		
Plateau Voltage	V_{GP}	V _{GS} = 10 V, V _{DD} = 50 V	, I _D = 8.5 A		3.3		V
SWITCHING CHARACTERISTICS							
Turn-On Delay Time	t _{d(ON)}				12		ns
Rise Time	t _r	V_{GS} = 10 V, V_{DS} = 50 V, I_{D} = 8.5 A, R_{G} = 6 Ω			8		
Turn-Off Delay Time	t _{d(OFF)}				30		1
Fall Time	t _f				10		1
Turn-On Delay Time	t _{d(ON)}				20.1		ns
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, V_{DS} = 50 \text{ V}$, I _D = 8.5 A,		40.9		1
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = 4.5 V, V_{DS} = 50 V R_{G} = 6 Ω	, J ,		22.7		1
Fall Time	t _f				16		1

ELECTRICAL CHARACTERISTICS (Q1, N-CHANNEL) (T_J = 25°C unless otherwise noted) (continued)

	(·)	, (0		, (,		
Parameter	Symbol	Test Condit	ions	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.77	1.2	V
		$V_{GS} = 0 \text{ V},$ $I_{S} = 8.5 \text{ A}$ $T_{J} = 125^{\circ}\text{C}$			0.63		
Reverse Recovery Time	t _{RR}		•		39		ns
Charge Time	t _a	V_{GS} = 0 V, dI_S/dt = 100 A/ μ s, I_S = 4.2 A			22		
Discharge Time	t _b				17		
Reverse Recovery Charge	Q _{RR}				38		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS (Q2, P-CHANNEL) (T_J = 25°C unless otherwise noted)

Description	Unit	Max	Тур	Min	Test Conditions		Symbol	Parameter
Drain-to-Source Breakdown Voltage Temperature Coefficient V(BR)DSS / TJ ID = -250 μA, ref to 25°C 60 Zero Gate Voltage Drain Current IDSS $V_{GS} = 0 \text{ V}, V_{DS} = -80 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$ -1 Gate-to-Source Leakage Current IDSS $V_{DS} = -80 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$ -100 Gate-to-Source Leakage Current IDSS $V_{DS} = 0 \text{ V}, V_{DS} = \pm 20 \text{ V}$ ±100 ON CHARACTERISTICS Gate Threshold Voltage $V_{GS(TH)}$ $V_{GS} = V_{DS}, I_{D} = -158 \mu A$ -2.0 -3.31 -4.0 Negative Threshold Temperature Coefficient $V_{GS(TH)}$ $V_{GS} = 100 \text{ V}, I_{D} = -8.5 \text{ A}$ 28.5 36 Drain-to-Source On Resistance $P_{DS(on)}$ $V_{GS} = 10 \text{ V}, I_{D} = -8.5 \text{ A}$ 28.5 36 Forward Transconductance g_{FS} $V_{DS} = -5 \text{ V}, I_{D} = -8.5 \text{ A}$ 17.7 17.7 Gate-Resistance P_{GS} P_{GS} P_{GS} 2.41 2.44 CHARGES & CAPACITANCES Input Capacitance P_{GS} P_{GS} P_{GS} P_{GS} 2443					•			OFF CHARACTERISTICS
Temperature Coefficient IDSS $V_{GS} = 0 \text{ V}, V_{DS} = -80 \text{ V}$ $T_J = 25^{\circ}\text{C}$ -1 Gate -to-Source Leakage Current IGSS $V_{DS} = 0 \text{ V}, V_{GS} = ±20 \text{ V}$ ±100 ON CHARACTERISTICS Gate Threshold Voltage $V_{GS}(TH)$ $V_{GS} = V_{DS}, I_D = -158 \mu A$ -2.0 -3.31 -4.0 Negative Threshold Temperature Coefficient $V_{GS}(TH)^{T/T}J$ $I_D = -158 \mu A, \text{ ref to } 25^{\circ}\text{C}$ 6.9 6.9 Drain-to-Source On Resistance $R_{DS}(on)$ $V_{GS} = 10 \text{ V}, I_D = -8.5 \text{ A}$ 28.5 36 V _{GS} = -6 V, I _D = -8.5 A 28.5 36 36.3 36.3 36.1 Forward Transconductance 9FS $V_{DS} = -5 \text{ V}, I_D = -8.5 \text{ A}$ 17.7 38.3 50.1 Forward Transconductance 9FS $V_{DS} = -5 \text{ V}, I_D = -8.5 \text{ A}$ 17.7 36.2 CHARGES & CAPACITANCES Input Capacitance C_{ISS} $V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}, V_{DS} = -50 \text{ V}$ 330 330 Output Capacitance C_{ISS} $V_{GS} = -10 \text{ V}, V_{DS} = -50 \text{ V}, I_D = -8.5 \text{ A}$	V			-100	$V_{GS} = 0 \text{ V, } I_D = -250 \mu\text{A}$		V _{(BR)DSS}	Drain-to-Source Breakdown Voltage
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mV/°C		60		I _D = -250 μA, ref to 25°C		V _{(BR)DSS} / T _J	
Gate-to-Source Leakage Current I _{GSS} V _{DS} = 0 V, V _{GS} = ±20 V ±100 CON CHARACTERISTICS Gate Threshold Voltage V _{GS} (TH) V _{GS} = V _{DS} , I _D = −158 μA −2.0 −3.31 −4.0 Negative Threshold Temperature Coefficient V _{GS} (TH) V _{GS} = 10 V, I _D = −8.5 A 28.5 36 Drain-to-Source On Resistance R _{DS} (on) V _{GS} = 10 V, I _D = −8.5 A 28.5 36 Forward Transconductance g _{FS} V _{DS} = −5 V, I _D = −8.5 A 17.7 17.7 Gate-Resistance R _G T _A = 25°C 2.41 17.7 CHARGES & CAPACITANCES Input Capacitance C _{ISS} V _{GS} = 0 V, f = 1 MHz, V _{DS} = −50 V 330 2443 1.0 CHARGES & CAPACITANCES Total Gate Charge Q _G (TOT) Q _G (TOT) 30 <	μΑ	-1			V _{GS} = 0 V, T _J = 25°C		I _{DSS}	Zero Gate Voltage Drain Current
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-100			$V_{DS} = -80 \text{ V}$ $T_{J} = 125^{\circ}\text{C}$			
Gate Threshold Voltage V _{GS(TH)} V _{GS} = V _{DS} , I _D = -158 μA -2.0 -3.31 -4.0 Negative Threshold Temperature Coefficient $V_{GS(TH)}^{T}J$ $I_D = -158 \mu A$, ref to 25°C 6.9 6.9 Drain-to-Source On Resistance $R_{DS(on)}$ $V_{GS} = 10 \text{ V}$, $I_D = -8.5 \text{ A}$ 28.5 36 Forward Transconductance 9FS $V_{DS} = -5 \text{ V}$, $I_D = -8.5 \text{ A}$ 17.7 17.7 Gate-Resistance R_G $T_A = 25^{\circ}\text{C}$ 2.41 17.7 CHARGES & CAPACITANCES Input Capacitance C_{ISS} $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$, $V_{DS} = -50 \text{ V}$ 330 18.4 Output Capacitance C_{ISS} $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$, $V_{DS} = -50 \text{ V}$ 330 15 Total Gate Charge $Q_{G(TOT)}$ $V_{GS} = -10 \text{ V}$, $V_{DS} = -50 \text{ V}$, $I_D = -8.5 \text{ A}$ 10.4 10.4 Gate-to-Drain Charge Q_{GD} $V_{GS} = -6 \text{ V}$, $V_{DS} = -50 \text{ V}$, $I_D = -8.5 \text{ A}$ 18.4 11.4 Total Gate Charge $V_{GS} = -6 \text{ V}$, $V_{DS} = -50 \text{ V}$, $V_{DS} = -50 \text{ V}$, $V_{DS} = -8.5 \text{ A}$ 18.4 18.4 Total Gate Charge <	nA	±100			V _{DS} = 0 V, V _{GS} = ±20 V		I _{GSS}	Gate-to-Source Leakage Current
Negative Threshold Temperature Coefficient $V_{GS(TH)}/T_J$ $I_D = -158 \mu A$, ref to 25°C 6.9 Drain-to-Source On Resistance $R_{DS(on)}$ $V_{GS} = 10 V$, $I_D = -8.5 A$ 28.5 36 Forward Transconductance g_{FS} $V_{DS} = -5 V$, $I_D = -8.5 A$ 17.7 17.7 Gate-Resistance R_G $T_A = 25^{\circ}C$ 2.41 17.7 CHARGES & CAPACITANCES Input Capacitance C_{ISS} $V_{GS} = 0 V$, $I_D = -8.5 A$ 17.7 330 Output Capacitance C_{ISS} $V_{GS} = 0 V$, $I_D = -8.5 A$ 15 15 Total Gate Charge $Q_{G(TOT)}$ $Q_{G(TOT)}$ $Q_{G(TOT)}$ 30 30 Total Gate Charge $Q_{G(TOT)}$ $Q_{G(TOT)}$ $Q_{G(TOT)}$ 5.1 10.4 Total Gate Charge $Q_{G(TOT)}$ $Q_{G(TOT)}$ $Q_{G(TOT)}$ $Q_{G(TOT)}$ 18.4 Plateau Voltage $Q_{G(TOT)}$ $Q_{G(TOT)}$ $Q_{G(TOT)}$ 18.4								ON CHARACTERISTICS
$ \begin{array}{c} \text{Coefficient} \\ \text{Drain-to-Source On Resistance} \\ \text{Drain-to-Source On Resistance} \\ \text{Pass}(\text{on}) \\ \\ \text{Forward Transconductance} \\ \text{Q}_{FS} \\ \text{V}_{QS} = -6 \text{ V, I}_{D} = -8.5 \text{ A} \\ \text{V}_{QS} = -5.7 \text{ A} \\ \text{38.3} \\ \text{50.1} \\ \text{Incompact Transconductance} \\ \text{Q}_{GE} \\ \text{CHARGES & CAPACITANCES} \\ \\ \text{Input Capacitance} \\ \text{Class} \\ \text{Output Capacitance} \\ \text{Class} \\ \text{Output Capacitance} \\ \text{Class} \\ \text{Coss} \\ \text{Total Gate Charge} \\ \text{Q}_{G(TOT)} \\ \text{Threshold Gate Charge} \\ \text{Q}_{GS} \\ \text{Gate-to-Drain Charge} \\ \text{Q}_{GD} \\ \text{Total Gate Charge} \\ \text{Q}_{G(TOT)} \\ \text{Class} \\ \text{Q}_{GC(TOT)} \\ \text{Class} \\ \text$	V	-4.0	-3.31	-2.0	58 μΑ	$V_{GS} = V_{DS}, I_D = -1$	V _{GS(TH)}	Gate Threshold Voltage
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mV/°C		6.9) 25°C	I _D = -158 μA, ref to	V _{GS(TH)} / T _J	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mΩ	36	28.5		8.5 A	V _{GS} = 10 V, I _D = -	R _{DS(on)}	Drain-to-Source On Resistance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50.1	38.3		$V_{GS} = -6 \text{ V}, I_D = -5.7 \text{ A}$		1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S		17.7		$V_{DS} = -5 \text{ V}, I_{D} = -8.5 \text{ A}$		9 _{FS}	Forward Transconductance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ω		2.41		T _A = 25°C		R_{G}	Gate-Resistance
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								CHARGES & CAPACITANCES
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pF		2443				C _{ISS}	Input Capacitance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			330		V _{GS} = 0 V, f = 1 MHz, V _{DS} = -50 V		C _{OSS}	Output Capacitance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			15		•		C _{RSS}	Reverse Transfer Capacitance
	nC		30				Q _{G(TOT)}	Total Gate Charge
			6.9				Q _{G(TH)}	Threshold Gate Charge
Total Gate Charge $Q_{G(TOT)}$ Plateau Voltage V_{GP} $V_{GS} = -6 \text{ V, } V_{DS} = -50 \text{ V, } I_D = -8.5 \text{ A}$ 5			10.4		$V_{GS} = -10 \text{ V}, V_{DS} = -50 \text{ V}, I_D = -8.5 \text{ A}$		Q_{GS}	Gate-to-Source Charge
Plateau Voltage V_{GP} $V_{GS} = -6 \text{ V}, V_{DS} = -50 \text{ V}, I_D = -8.5 \text{ A}$ 5			5.1				Q_GD	Gate-to-Drain Charge
Plateau Voltage V_{GP} $V_{GS} = -6 \text{ V}, V_{DS} = -50 \text{ V}, I_D = -8.5 \text{ A}$ 5			18.4		$V_{GS} = -6 \text{ V}, V_{DS} = -50 \text{ V}, I_D = -8.5 \text{ A}$		Q _{G(TOT)}	Total Gate Charge
SWITCHING CHARACTERISTICS	V		5					Plateau Voltage
			•		•			SWITCHING CHARACTERISTICS
Turn-On Delay Time t _{d(ON)} 12.4	ns		12.4				t _{d(ON)}	Turn-On Delay Time
Rise Time t_r $V_{GS} = 10 \text{ V}, V_{DS} = -50 \text{ V}, I_D = -8.5 \text{ A},$ 16.1			16.1		, I _D = -8.5 A.	V _{GS} = 10 V. V _{DS} = -50 V	t _r	Rise Time
Turn–Off Delay Time $t_{d(OFF)}$ $R_G = 6 \Omega$ 20			20		, <u>,</u> , ,	$R_G = 6 \Omega$	t _{d(OFF)}	Turn-Off Delay Time
Fall Time t _f 24			24		ľ		t _f	Fall Time

ELECTRICAL CHARACTERISTICS (Q2, P-CHANNEL) (T_J = 25°C unless otherwise noted) (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Turn-On Delay Time	t _{d(ON)}			27		ns
Rise Time	t _r	$V_{GS} = -6 \text{ V}, V_{DS} = -50 \text{ V}, I_{D} = -8.5 \text{ A},$		25		
Turn-Off Delay Time	t _{d(OFF)}	$R_G = 6 \Omega$		22		
Fall Time	t _f			8.5		

OFF CHARACTERISTICS

Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C	-0.84	-1.2	V
		$V_{GS} = 0 \text{ V},$ $I_{S} = -8.5 \text{ A}$	T _J = 125°C	0.7		
Reverse Recovery Time	t _{RR}			39		ns
Charge Time	t _a	V_{GS} = 0 V, dI_S/dt = 100 A/ μ s, I_S = -4.2 A		23		
Discharge Time	t _b			16.6		
Reverse Recovery Charge	Q_{RR}			38		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS - N-CHANNEL

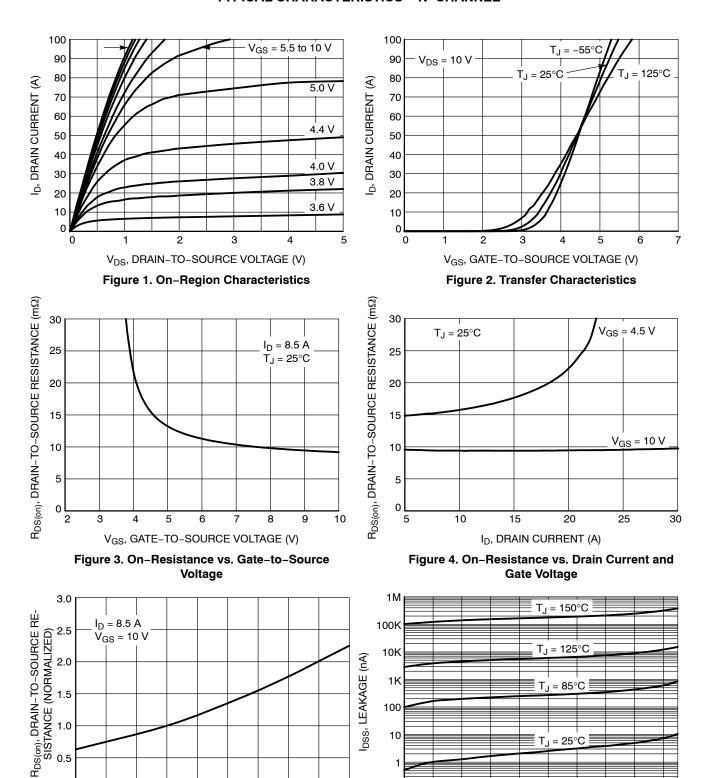


Figure 5. On–Resistance Variation with Temperature

T_J, JUNCTION TEMPERATURE (°C)

50

75

100

125

150

175

-50

-25

0

Figure 6. Drain-to-Source Leakage Current vs. Voltage

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

55

65

95

0.1

5

15

TYPICAL CHARACTERISTICS - N-CHANNEL

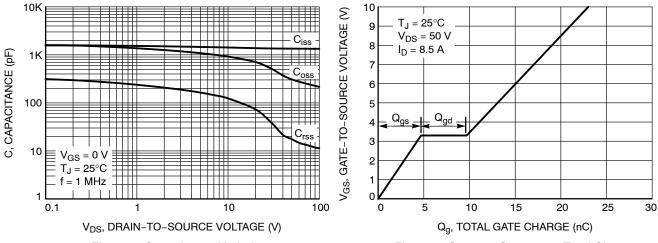


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source vs. Total Charge

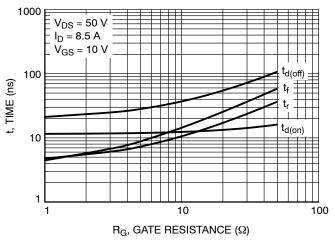


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

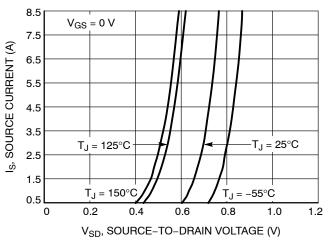


Figure 10. Diode Forward Voltage vs. Current

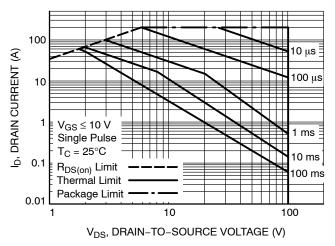


Figure 11. Maximum Rated Forward Biased Safe Operating Area

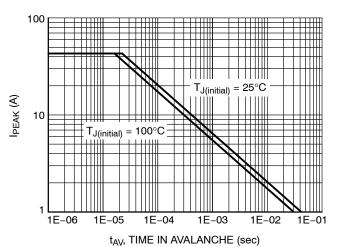


Figure 12. Maximum Drain Current vs. Time in Avalanche

TYPICAL CHARACTERISTICS - N-CHANNEL

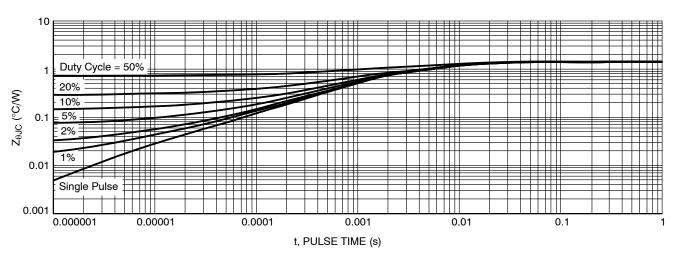


Figure 13. Thermal Response

TYPICAL CHARACTERISTICS - P-CHANNEL

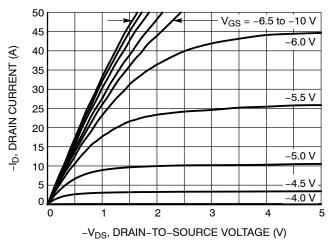


Figure 14. On-Region Characteristics

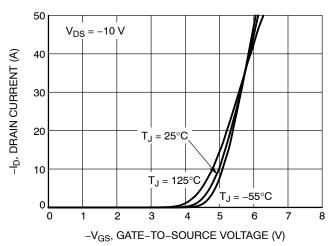


Figure 15. Transfer Characteristics

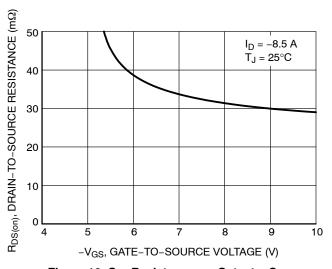


Figure 16. On-Resistance vs. Gate-to-Source Voltage

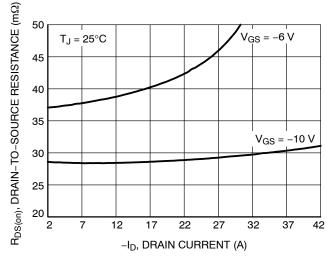


Figure 17. On-Resistance vs. Drain Current and Gate Voltage

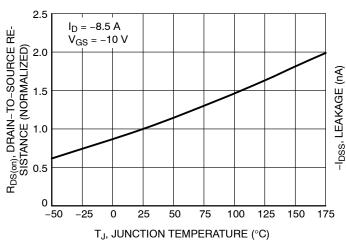


Figure 18. On-Resistance Variation with Temperature

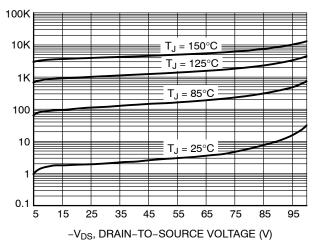
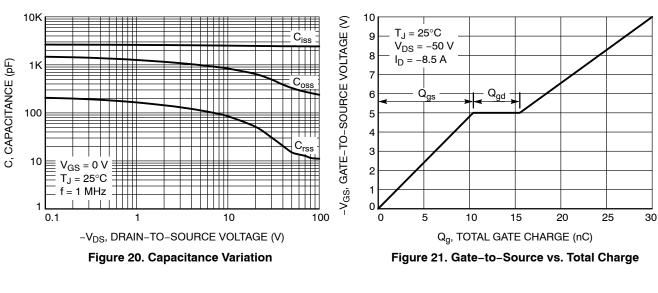
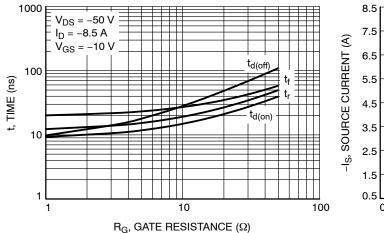




Figure 19. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS - P-CHANNEL

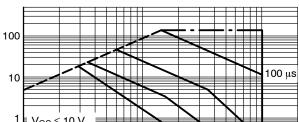


Figure 22. Resistive Switching Time Variation

vs. Gate Resistance

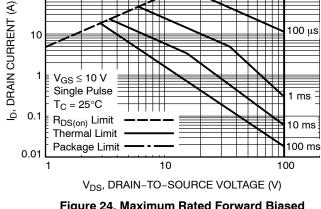


Figure 24. Maximum Rated Forward Biased Safe Operating Area

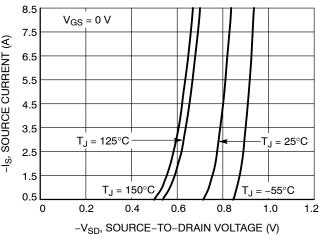


Figure 23. Diode Forward Voltage vs. Current

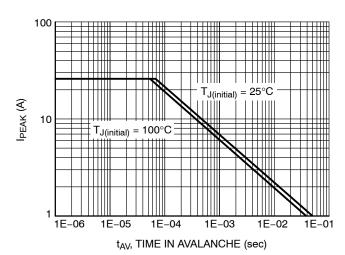


Figure 25. Maximum Drain Current vs. Time in **Avalanche**

TYPICAL CHARACTERISTICS - P-CHANNEL

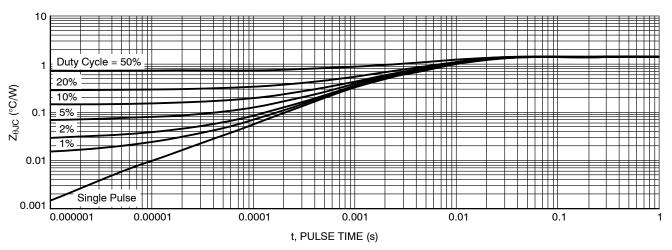
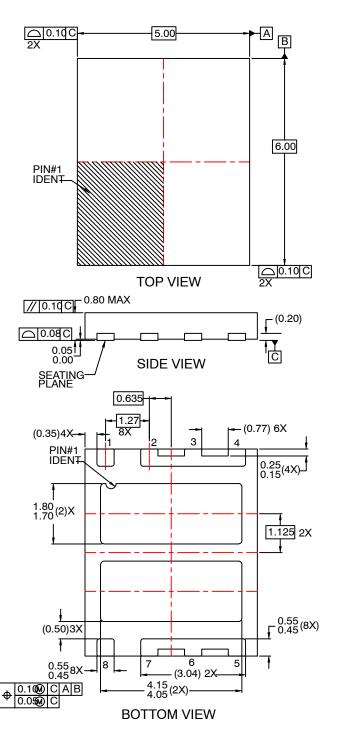
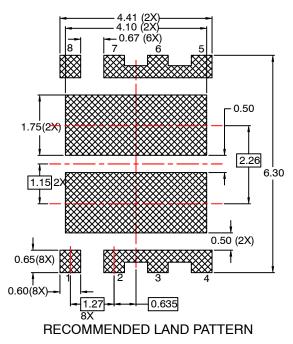


Figure 26. Thermal Response


ORDERING INFORMATION


Device	Device Marking	Package	Shipping (Qty / Packing) [†]
NTMFC013NP10M5L	13NP10M5L	SO8FL (Pb-Free/Halogen Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

WDFN8 5x6, 1.27P CASE 511DC ISSUE O

NOTES:

- A. DOES NOT FULLY CONFORM TO JEDEC REGISTRATION, MO-229.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative