# **Power MOSFET**

# -8 V, -8.1 A, μCOOL™ Single P-Channel, 2x2 mm, WDFN package

# **Features**

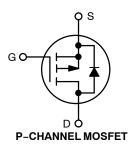
- WDFN Package with Exposed Drain Pad for Excellent Thermal Conduction
- Lowest RDS(on) in 2 x 2 mm Package
- 1.2 V RDS(on) Rating for Operation at Low Voltage Logic Level Gate Drive
- 2 x 2 mm Footprint Same as SC-88 Package
- Low Profile (<0.8 mm) for Easy Fit in Thin Environments
- This is a Halide-Free Device
- This is a Pb-Free Device

# **Applications**

- High Side Load Switch
- Li Ion Battery Linear Mode Charging
- Optimized for Battery and Load Management Applications in Portable Equipment

# **MAXIMUM RATINGS** ( $T_J = 25^{\circ}C$ unless otherwise stated)

| Parameter                                                         |         |                        | Symbol                            | Value         | Unit |  |
|-------------------------------------------------------------------|---------|------------------------|-----------------------------------|---------------|------|--|
| Drain-to-Source Voltage                                           |         |                        | $V_{DSS}$                         | -8            | V    |  |
| Gate-to-Source \                                                  | /oltage |                        | $V_{GS}$                          | ± 6           | V    |  |
| Continuous<br>Drain Current                                       | Steady  | T <sub>A</sub> = 25°C  |                                   | -6.2          |      |  |
| (Note 1)                                                          | State   | T <sub>A</sub> = 85°C  | I <sub>D</sub>                    | -4.5          | Α    |  |
|                                                                   | t ≤ 5 s | T <sub>A</sub> = 25°C  |                                   | -8.1          |      |  |
| Power                                                             | Steady  | T <sub>A</sub> = 25°C  |                                   | 1.9           |      |  |
| Dissipation<br>(Note 1)                                           | State   |                        | $P_{D}$                           |               | W    |  |
| (Note 1)                                                          | t ≤ 5 s |                        |                                   | 3.3           |      |  |
| Continuous<br>Drain Current                                       |         | T <sub>A</sub> = 25°C  |                                   | -3.7          | А    |  |
| (Note 2)                                                          | Steady  | T <sub>A</sub> = 85°C  | I <sub>D</sub>                    | -2.7          |      |  |
| Power<br>Dissipation<br>(Note 2)                                  | State   | T <sub>A</sub> = 25°C  | P <sub>D</sub>                    | 0.7           | W    |  |
| Pulsed Drain Curr                                                 | ent     | t <sub>p</sub> = 10 μs | I <sub>DM</sub>                   | -30           | Α    |  |
| Operating Junction and Storage<br>Temperature                     |         |                        | T <sub>J</sub> , T <sub>STG</sub> | –55 to<br>150 | °C   |  |
| Source Current (Body Diode) (Note 2)                              |         |                        | I <sub>S</sub>                    | -5.5          | Α    |  |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s) |         |                        | TL                                | 260           | °C   |  |


- Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- 2. Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 30 mm<sup>2</sup> [2 oz] including traces).



# ON Semiconductor®

# http://onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> MAX | I <sub>D</sub> MAX |
|----------------------|-------------------------|--------------------|
|                      | 36 mΩ @ -4.5 V          | -6.2 A             |
|                      | 45 mΩ @ –2.5 V          | -5.5 A             |
| -8.0 V               | 68 mΩ @ –1.8 V          | -3.0 A             |
|                      | 90 mΩ @ –1.5 V          | -1.0 A             |
|                      | 300 mΩ @ –1.2 V         | -0.2 A             |





MARKING **DIAGRAM** 6 5


= Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

#### **PIN CONNECTIONS**



#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

# THERMAL RESISTANCE RATINGS

| Parameter                                           | Symbol         | Max | Unit |
|-----------------------------------------------------|----------------|-----|------|
| Junction-to-Ambient - Steady State (Note 3)         | $R_{	heta JA}$ | 65  |      |
| Junction-to-Ambient – $t \le 5 s$ (Note 3)          | $R_{	heta JA}$ | 38  | °C/W |
| Junction-to-Ambient - Steady State min Pad (Note 4) | $R_{	hetaJA}$  | 180 |      |

- Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
   Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 30 mm² [2 oz] including traces).

# **MOSFET ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ unless otherwise specified)

| Parameter                                                    | Symbol                               | Test Condition                                                                                            |                             | Min   | Тур  | Max         | Unit  |
|--------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------|-------|------|-------------|-------|
| OFF CHARACTERISTICS                                          |                                      |                                                                                                           |                             |       |      |             |       |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                 | $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$                                                            |                             | -8.0  |      |             | V     |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /T <sub>J</sub> | $I_D = -250 \mu A$ , Ref to 25°C                                                                          |                             |       | -7.2 |             | mV/°C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                     | $V_{GS} = 0 \text{ V}, \\ V_{DS} = -8 \text{V}$ $T_{J} = 25^{\circ}\text{C}$ $T_{J} = 85^{\circ}\text{C}$ |                             |       |      | -1.0<br>-10 | μΑ    |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                     | V <sub>DS</sub> = 0 V, V <sub>0</sub>                                                                     | <sub>GS</sub> = ±6V         |       |      | ±0.1        | μΑ    |
| ON CHARACTERISTICS (Note 5)                                  | <u> </u>                             |                                                                                                           |                             | 1     |      |             |       |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                  | $V_{GS} = V_{DS}, I_{D}$                                                                                  | = -250 μA                   | -0.29 |      | -0.72       | V     |
| Negative Threshold Temperature<br>Coefficient                | V <sub>GS(TH)</sub> /T <sub>J</sub>  |                                                                                                           |                             |       | 2.7  |             | mV/°C |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                  | $V_{GS} = -4.5 \text{ V},$                                                                                | I <sub>D</sub> = -6.2 A     |       | 25   | 36          | mΩ    |
|                                                              | <br>                                 | $V_{GS} = -4.5 V$ ,                                                                                       | I <sub>D</sub> = -3.0 A     |       | 25   | 36          |       |
|                                                              | <br>                                 | $V_{GS} = -2.5 \text{ V},$                                                                                | I <sub>D</sub> = -5.5 A     |       | 34   | 45          |       |
|                                                              |                                      | $V_{GS} = -2.5 V$ ,                                                                                       | I <sub>D</sub> = -3.0 A     |       | 34   | 45          |       |
|                                                              |                                      | $V_{GS} = -1.8 V$ ,                                                                                       | I <sub>D</sub> = -3.0 A     |       | 45   | 68          |       |
|                                                              | [                                    | $V_{GS} = -1.5 V$ ,                                                                                       | I <sub>D</sub> = −1.0 A     |       | 55   | 90          |       |
|                                                              |                                      | $V_{GS} = -1.2 V$ ,                                                                                       | I <sub>D</sub> = -0.2 A     |       | 80   | 300         |       |
| Forward Transconductance                                     | 9 <sub>FS</sub>                      | $V_{DS} = -4 \text{ V}, I_{D} = -6.2 \text{ A}$                                                           |                             |       | 14.3 |             | S     |
| CHARGES, CAPACITANCES AND GA                                 | TE RESISTANC                         | E                                                                                                         |                             |       |      |             |       |
| Input Capacitance                                            | C <sub>ISS</sub>                     | V <sub>GS</sub> = 0 V, f = 1 MI                                                                           | Hz, $V_{DS} = -4 \text{ V}$ |       | 1585 |             | pF    |
| Output Capacitance                                           | C <sub>OSS</sub>                     |                                                                                                           |                             |       | 350  |             |       |
| Reverse Transfer Capacitance                                 | C <sub>RSS</sub>                     |                                                                                                           |                             |       | 185  |             |       |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                  |                                                                                                           |                             |       | 15.7 | 25          | nC    |
| Threshold Gate Charge                                        | Q <sub>G(TH)</sub>                   | V <sub>GS</sub> = -4.5 V, \                                                                               | / <sub>DS</sub> = - 4 V;    |       | 0.8  |             |       |
| Gate-to-Source Charge                                        | Q <sub>GS</sub>                      | $V_{GS} = -4.5 \text{ V}, V_{DS} = -4 \text{ V};$ $I_D = -6.2 \text{ A}$                                  |                             |       | 1.9  |             |       |
| Gate-to-Drain Charge                                         | $Q_{GD}$                             |                                                                                                           |                             |       | 3.3  |             |       |
| SWITCHING CHARACTERISTICS, $V_{G}$                           | S = <b>4.5 V</b> (Note 6             | )                                                                                                         |                             |       |      |             |       |
| Turn-On Delay Time                                           | t <sub>D(ON)</sub>                   |                                                                                                           |                             |       | 8.0  |             | ns    |
| Rise Time                                                    | t <sub>r</sub>                       | $V_{GS}$ = -4.5 V, $V_{DS}$ = -4 V, $I_{D}$ = -6.2 A, $R_{G}$ = 1 $\Omega$                                |                             |       | 41   |             |       |
| Turn-Off Delay Time                                          | t <sub>d(OFF)</sub>                  |                                                                                                           |                             |       | 80   |             |       |
| Fall Time                                                    | t <sub>f</sub>                       |                                                                                                           |                             |       | 70   |             |       |

- 5. Pulse Test: pulse width  $\leq$  300  $\mu$ s, duty cycle  $\leq$  2%
- 6. Switching characteristics are independent of operating junction temperatures

# MOSFET ELECTRICAL CHARACTERISTICS ( $T_J = 25^{\circ}C$ unless otherwise specified)

| Parameter                 | Symbol                          | Test Cond                                                                                    | lition                                                | Min | Тур   | Max  | Unit |
|---------------------------|---------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------|-----|-------|------|------|
| SWITCHING CHARACTERISTICS | , V <sub>GS</sub> = 4.5 V (Note | 6)                                                                                           |                                                       |     |       |      |      |
| Turn-On Delay Time        | t <sub>D(ON)</sub>              | $V_{GS} = -4.5 \text{ V}, V_{DS} = -4 \text{ V},$ $I_{D} = -8.1 \text{ A}, R_{G} = 1 \Omega$ |                                                       |     | 8.0   |      | ns   |
| Rise Time                 | t <sub>r</sub>                  |                                                                                              |                                                       |     | 19    |      |      |
| Turn-Off Delay Time       | t <sub>d(OFF)</sub>             |                                                                                              |                                                       |     | 78    |      |      |
| Fall Time                 | t <sub>f</sub>                  |                                                                                              |                                                       |     | 50    |      |      |
| DRAIN-SOURCE DIODE CHARA  | CTERISTICS                      |                                                                                              |                                                       |     |       |      |      |
| Forward Diode Voltage     | $V_{SD}$                        | $V_{GS} = 0 \text{ V},$ $T_{J} = 25^{\circ}\text{C}$                                         |                                                       |     | -0.6  | -1.0 | V    |
|                           |                                 | $I_{S} = -1.0 \text{ A}$                                                                     | $I_{S} = -1.0 \text{ A}$ $T_{J} = 85^{\circ}\text{C}$ |     | -0.58 |      |      |
| Reverse Recovery Time     | t <sub>RR</sub>                 | $V_{GS} = 0 \text{ V, } d_{ISD}/d_t = 100 \text{ A/}\mu\text{s,} \\ I_S = -1.0 \text{ A}$    |                                                       |     | 55    | 85   | ns   |
| Charge Time               | t <sub>a</sub>                  |                                                                                              |                                                       |     | 18    |      |      |
| Discharge Time            | t <sub>b</sub>                  |                                                                                              |                                                       |     | 37    |      |      |
| Reverse Recovery Charge   | Q <sub>RR</sub>                 |                                                                                              |                                                       |     | 39    |      | nC   |

# **ORDERING INFORMATION**

| Device        | Package            | Shipping <sup>†</sup> |
|---------------|--------------------|-----------------------|
| NTLJS1102PTBG | WDFN6<br>(Pb-Free) | 3000 / Tape & Reel    |
| NTLJS1102PTAG | WDFN6<br>(Pb-Free) | 3000 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

<sup>5.</sup> Pulse Test: pulse width  $\leq$  300  $\mu$ s, duty cycle  $\leq$  2% 6. Switching characteristics are independent of operating junction temperatures

# **TYPICAL CHARACTERISTICS**

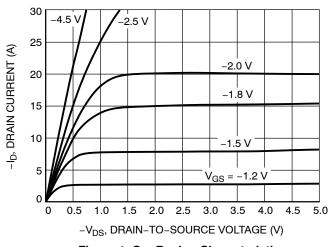



Figure 1. On-Region Characteristics

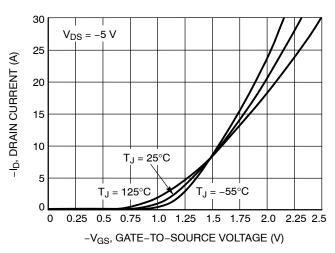



Figure 2. Transfer Characteristics

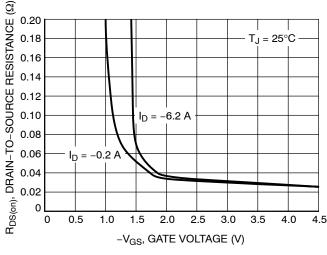



Figure 3. On-Resistance vs. Gate-to-Source Voltage

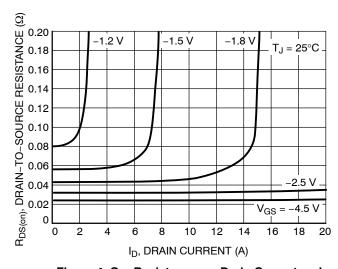



Figure 4. On-Resistance vs. Drain Current and Gate Voltage

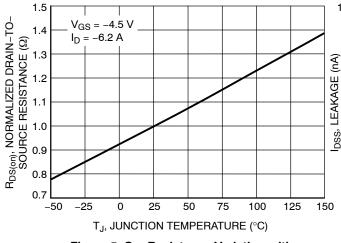



Figure 5. On–Resistance Variation with Temperature

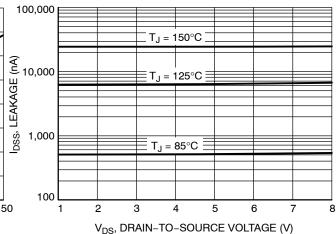
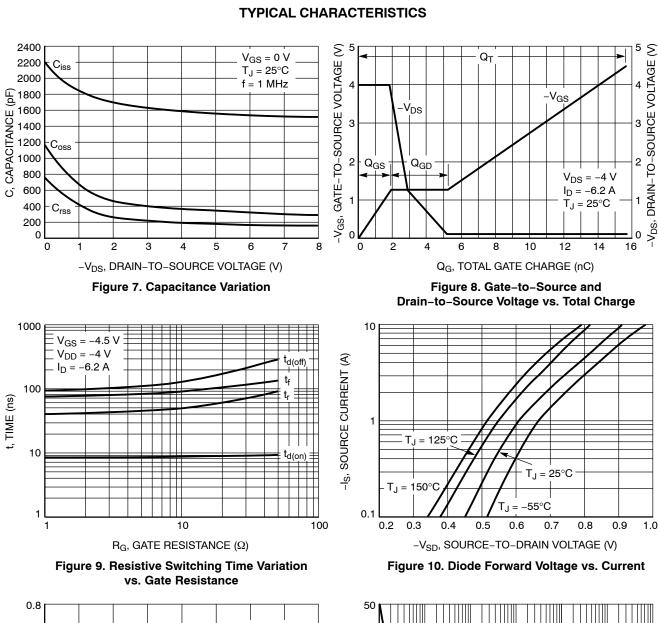




Figure 6. Drain-to-Source Leakage Current vs. Voltage



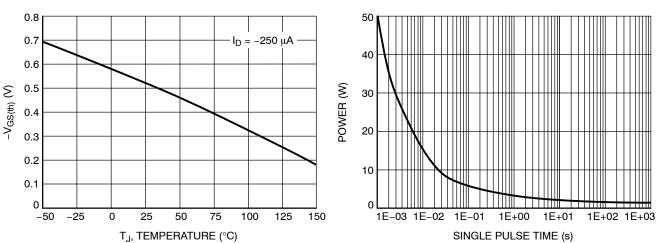



Figure 11. Threshold Voltage

Figure 12. Single Pulse Maximum Power Dissipation

# **TYPICAL CHARACTERISTICS**

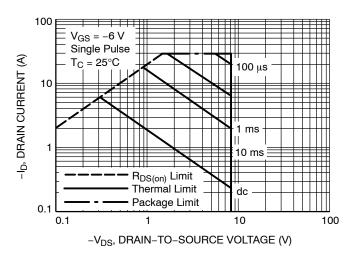



Figure 13. Maximum Rated Forward Biased Safe Operating Area

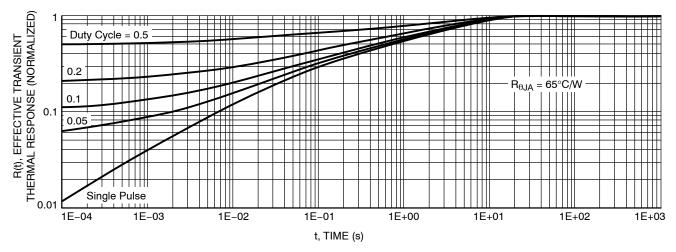



Figure 14. FET Thermal Response



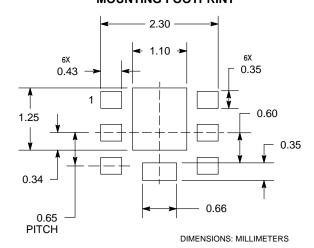
SCALE 4:1

**WDFN6 2x2** CASE 506AP **ISSUE B** 

**DATE 26 APR 2006** 

- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ASME
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20mm FROM TERMINAL.
- 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
- CENTER TERMINAL LEAD IS OPTIONAL. TERMINAL LEAD IS CONNECTED TO TERMINAL LEAD # 4.
- 2. PINS 1, 2, 5 AND 6 ARE TIED TO THE FLAG.

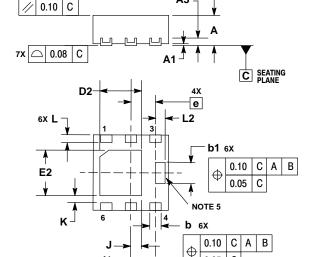
|     | MILLIMETERS |      |  |  |
|-----|-------------|------|--|--|
| DIM | MIN         | MAX  |  |  |
| Α   | 0.70        | 0.80 |  |  |
| A1  | 0.00        | 0.05 |  |  |
| A3  | 0.20 REF    |      |  |  |
| b   | 0.25        | 0.35 |  |  |
| b1  | 0.51        | 0.61 |  |  |
| D   | 2.00 BSC    |      |  |  |
| D2  | 1.00        | 1.20 |  |  |
| E   | 2.00 BSC    |      |  |  |
| E2  | 1.10        | 1.30 |  |  |
| е   | 0.65        | BSC  |  |  |
| K   | 0.15        | REF  |  |  |
| L   | 0.20        | 0.30 |  |  |
| L2  | 0.20        | 0.30 |  |  |
| J   | 0.27 REF    |      |  |  |
| J1  | 0.65 REF    |      |  |  |


# **GENERIC MARKING DIAGRAM\***



XX = Specific Device Code = Date Code

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.


# **SOLDERMASK DEFINED** MOUNTING FOOTPRINT



| DOCUMENT NUMBER: | 98AON20860D           | Electronic versions are uncontrolled except when accessed directly from the Document Reposi<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | 6 PIN WDFN 2X2, 0.65P |                                                                                                                                                                                | PAGE 1 OF 1 |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

# В F PIN ONE REFERENCE $\Box$ 0.10 C 0.10



STYLE 1:

- PIN 1. DRAIN
  - DRAIN 2.
  - GATE
  - SOURCE DRAIN
  - 5. 6. DRAIN
- STYLE 2:

**BOTTOM VIEW** 

PIN 1. COLLECTOR

С 0.05

NOTE 3

- COLLECTOR 2.
- 3. BASE
- EMITTER COLLECTOR
- 5.
- COLLECTOR

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

#### ADDITIONAL INFORMATION

**TECHNICAL PUBLICATIONS:** 

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales