Small Signal MOSFET

-20 V, -280 mA, P-Channel with ESD Protection, SOT-723

Features

- Enables High Density PCB Manufacturing
- 44% Smaller Footprint than SC-89 and 38% Thinner than SC-89
- Low Voltage Drive Makes this Device Ideal for Portable Equipment
- Low Threshold Levels, 1.8 V R_{DS(on)} Rating
- Low Profile (< 0.5 mm) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics
- Operated at Standard Logic Level Gate Drive, Facilitating Future Migration to Lower Levels Using the Same Basic Topology.
- This is a Pb–Free Device

Applications

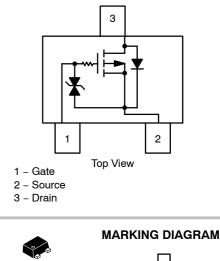
- Interfacing, Switching
- High Speed Switching
- Cellular Phones, PDA's

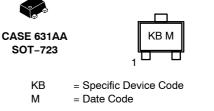
MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Parame	ter		Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	-20	V
Gate-to-Source Voltage			V _{GS}	±8.0	V
Continuous Drain	Steady	T _A = 25°C		-260	
Current (Note 1)	State	T _A = 85°C	I _D	-185	mA
	t ≤ 5 s	T _A = 25°C		-280	
Power Dissipation	Steady			400	
(Note 1)	State	T _A = 25°C	PD		mW
	t ≤ 5 s			500	
Continuous Drain		T _A = 25°C	I _D	-215	mA
Current (Note 2)	Steady	T _A = 85°C		-155	110 (
Power Dissipation (Note 2)	State	$T_A = 25^{\circ}C$	P _D	280	mW
Pulsed Drain Current	t _p =	10 μs	I _{DM}	-310	mA
Operating Junction and Sto	T _J , T _{STG}	–55 to 150	°C		
Source Current (Body Dioc	۱ _S	-240	mA		
Lead Temperature for Sold (1/8" from case for 10 s)	ering Purp	ooses	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
- 2. Surface-mounted on FR4 board using the minimum recommended pad size.




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D Max
	2.7 Ω @ –4.5 V	
–20 V	4.1 Ω @ –2.5 V	–280 mA
	6.1 Ω @ –1.8 V	

SOT-723 (3-LEAD)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTK3142PT1G	SOT-723 (Pb-Free)	4000/Tape & Reel 4 mm Pitch
NTK3142PT5G	SOT-723 (Pb-Free)	8000/Tape & Reel 2 mm Pitch

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Мах	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	315	
Junction-to-Ambient $- t = 5 s$ (Note 3)	$R_{ hetaJA}$	250	°C/W
Junction-to-Ambient - Steady State Minimum Pad (Note 4)	$R_{ hetaJA}$	440	

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
Surface-mounted on FR4 board using the minimum recommended pad size.

MOSFET ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit		
OFF CHARACTERISTICS									
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D = -1$	00 μΑ	-20			V		
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	$I_D = -100 \ \mu A$, Reference to $25^{\circ}C$			14		mV/°C		
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -16 V	$T_J = 25^{\circ}C$			-1.0			
		V _{DS} = -16 V	T _J = 125°C			-2.0	μΑ		
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±5 V				±1	μΑ		
ON CHARACTERISTICS (Note 5)									
Gate Threshold Voltage	V _{GS(TH)}	V_{GS} = V_{DS} , I_D = -250 μ A		-0.4		-1.3	V		
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-2.0		mV/°C		

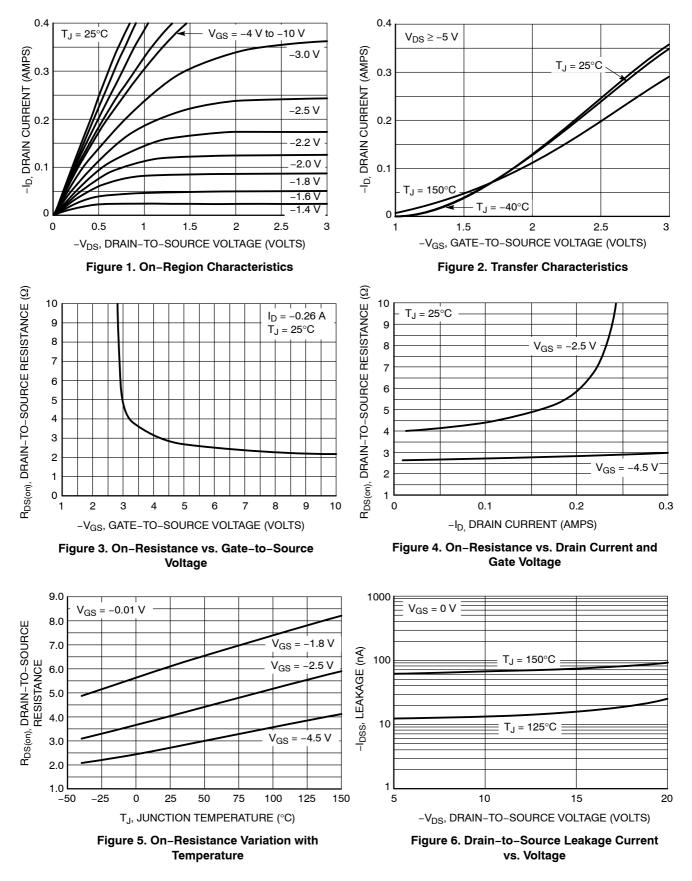
Coefficient	VGS(TH)/ 'J		-2.0		mV/°C
Drain-to-Source On Resistance	R _{DS(ON)}	V_{GS} = -4.5V, I _D = -260 mA	2.9	4.0	Ω
Drain-to-Source On Resistance	R _{DS(ON)}	$V_{GS} = -4.5V, I_D = -10 \text{ mA}$	2.7	3.4	
		$V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -1 \text{ mA}$	4.1	5.3	Ω
		$V_{GS} = -1.8 \text{ V}, \text{ I}_{D} = -1 \text{ mA}$	6.1	10	
Forward Transconductance	9 _{FS}	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -10 \text{ mA}$	73		mS

CAPACITANCES

Input Capacitance	C _{ISS}		15.3	
Output Capacitance	C _{OSS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = -10 V	4.3	pF
Reverse Transfer Capacitance	C _{RSS}		2.3	

SWITCHING CHARACTERISTICS, V_{GS} = 4.5 V (Note 6)

Turn-On Delay Time	t _{d(ON)}		8.4	16	
Rise Time	t _r	V_{GS} = -4.5 V, V_{DD} = -5 V, I_{D} = -100 mA,	15.3	28	ns
Turn-Off Delay Time	t _{d(OFF)}	$R_{G} = 6 \Omega$	37.5	80	115
Fall Time	t _f		22.7	43	


DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = –10 mA	$T_J = 25^{\circ}C$		0.69	-1.2	V	
		VGS = 0 V, IS= = 10 IIIA	T _J = 125°C		0.56			
Reverse Recovery Time	t _{RR}				37	80		
Charge Time	t _a	V _{GS} = 0 V, V _{DD} = −20 V, dI _{SD} /dt = 100 A/µs, I _S = −1.0 A			15.9	30	ns	
Discharge Time	t _b	dI _{SD} /dt = 100 A/µs, I _S		21.1	50			
Reverse Recovery Charge	Q _{RR}			20	70	nC		

5. Pulse Test: pulse width \leq 300 $\mu s,$ duty cycle \leq 2%.

6. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

30 1000 $T_J = 25^{\circ}C$ $V_{GS} = 0 V$ $V_{DD} = -5 V$ $I_{\rm D} = -10 \, {\rm mA}$ 25 V_{GS} = -4.5 V C, CAPACITANCE (pF) 20 100 \dot{C}_{iss} t, TIME (ns) t_{d(off)} 15 10 t_{d(on)} 10 t, Coss 5 C_{rss} 0 1 0 2.5 5 7.5 10 12.5 15 17.5 20 1 10 100 -DRAIN-TO-SOURCE VOLTAGE (V) R_G, GATE RESISTANCE (OHMS) Figure 7. Capacitance Variation Figure 8. Resistive Switching Time Variation vs. Gate Resistance

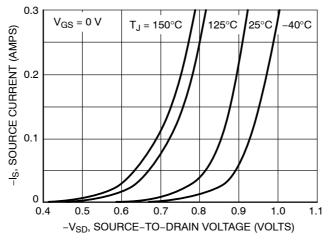
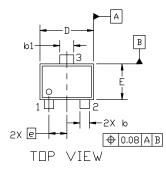
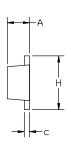


Figure 9. Diode Forward Voltage vs. Current

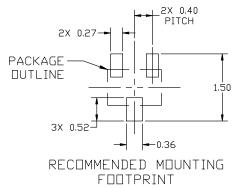
MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

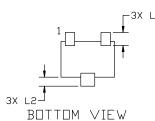

SOT-723 1.20x0.80x0.50, 0.40P CASE 631AA ISSUE E


DATE 24 JAN 2024

onsemi

NDTES:


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. CONTROLLING DIMENSION: MILLIMETERS. 1.
- 2.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH, MINIMUM З. LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.



SIDE VIEW

	MILLIMETERS						
DIM	MIN.	NDM.	MAX.				
А	0.45	0.50	0.55				
b	0.15	0.21	0.27				
b1	0.25	0.31	0.37				
С	0.07	0.12	0.17				
D	1.15	1.20	1.25				
E	0.75	0.80	0.85				
e		0.40 BSC					
Н	1.15	1.20	1.25				
L	0.29 REF						
L2	0.15	0.20	0.25				

*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC **MARKING DIAGRAM***

XX = Specific Device Code Μ = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE	STYLE 3: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 4: PIN 1. CATH 2. CATH 3. ANOE	ODE 2. SOURCE				
DOCUMENT NUMBER: 98AON12989D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.								
DESCRIPTION: SOT-723 1.20x0.80x0.50, 0						PAGE 1	OF 1	
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves								

purpose, nor does onsemi assume an yiability arising out of the application or use of any product or circuit, and specificative displants any and that it is in the interview of the application or use of any product or circuit, and specification and any any parameters and any parameters any paramet special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>