Power MOSFET

20 V, 4.5 A, Dual N-Channel, ChipFET™

Features

- Low R_{DS(on)} and Fast Switching Speed
- Leadless ChipFET Package has 40% Smaller Footprint than TSOP-6. Ideal Device for Applications Where Board Space is at a Premium.
- ChipFET Package Exhibits Excellent Thermal Capabilities. Ideal for Applications Where Heat Transfer is Required.
- Pb-Free Packages are Available

Applications

- DC-DC Buck or Boost Converters
- Low Side Switching
- Optimized for Battery and Low Side Switching Applications in Computing and Portable Equipment

MAXIMUM RATINGS (T_{.I} = 25°C unless otherwise noted)

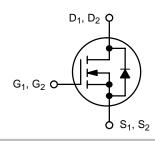
Parame	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	20	V		
Gate-to-Source Voltage			V_{GS}	±8.0	V
Continuous Drain	Steady	T _A =25°C	I _D	3.3	Α
Current (Note 1)	State	T _A =85°C		2.4	
	t ≤ 5 s	T _A =25°C		4.5	
Power Dissipation (Note 1)	Steady State	T _A =25°C	P _D	1.13	W
Continuous Drain		T _A =25°C	I _D	2.5	Α
Current (Note 2)	Steady	T _A =85°C		1.8	
Power Dissipation (Note 2)	State	T _A =25°C	P_{D}	0.64	W
Pulsed Drain Current	t _p =10 μ	S	I _{DM}	10	Α
Operating Junction and S	T _J , T _{STG}	–55 to 150	°C		
Source Current (Body Die	Is	2.6	Α		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	110	°C/W
Junction–to–Ambient – $t \le 5$ s (Note 1)	$R_{\theta JA}$	60	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	195	

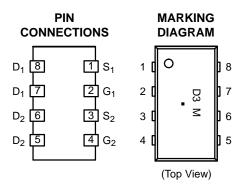
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).
- Surface Mounted on FR4 Board using the minimum recommended pad size (Cu area = 0.214 in sq).
- 3. ESD Rating Information: Human Body Model (HBM) Class 0.



ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
20 V	40 mΩ @ 4.5 V	4.5 A	
20 V	55 mΩ @ 2.5 V	4.071	

N-Channel MOSFET

ChipFET CASE 1206A STYLE 2

D3 = Specific Device Code

M = Month Code

= Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
OFF CHARACTERISTICS	•	•				•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V	20			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 16 V			1.0	μΑ
		V _{GS} = 0 V, V _{DS} = 16 V, T _J = 125°C			10	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8.0 \text{ V}$			±100	nA
ON CHARACTERISTICS (Note 4)						
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	0.6	0.75	1.2	V
Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 3.3 \text{ A}$		40	65	mΩ
		V _{GS} = 2.5 V, I _D = 2.3 A		55	105	1
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 3.3 A		6.0		S
CHARGES AND CAPACITANCES	•	•		•	•	•
Input Capacitance	C _{iss}			465		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 16 \text{ V}$		65		
Reverse Transfer Capacitance	C _{rss}	V DS = 10 V		30		
Total Gate Charge	Q _{G(TOT)}			4.0		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 2.5 \text{ V}, V_{DS} = 16 \text{ V},$ $I_{D} = 3.3 \text{ A}$		0.4		
Gate-to-Source Charge	Q _{GS}			0.8		
Gate-to-Drain Charge	Q_{GD}			2.0		
Total Gate Charge	Q _{G(TOT)}			6.0		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 10 \text{ V},$		0.5		1
Gate-to-Source Charge	Q _{GS}	I _D = 3.3 A		0.8		
Gate-to-Drain Charge	Q_{GD}	1		1.7		
SWITCHING CHARACTERISTICS (Note !	5)			•	•	•
Turn-On Delay Time	t _{d(on)}			6.0		ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 16 V,		17		1
Turn-Off Delay Time	t _{d(off)}	$I_D = 3.3 \text{ A}, R_G = 2.5 \Omega$		17		1
Fall Time	t _f	1		5.1		1
DRAIN-SOURCE DIODE CHARACTERIS	TICS	l			1	
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V, } I_{S} = 2.6 \text{ A}$		0.8	1.15	V
Reverse Recovery Time	t _{RR}			19.5		ns
Charge Time	t _a	$V_{GS} = 0 \text{ V, } I_{S} = 2.6 \text{ A,}$		6.0		1
Discharge Time	t _b	$dl_S/dt = 100 \text{ A/}\mu\text{s}$		13		1
Reverse Recovery Charge	Q _{RR}	1		7.0		nC
· •				1	ı	

ORDERING INFORMATION

CREEKING IN CRIMATION				
Device	Package	Shipping [†]		
NTHD5904NT1	ChipFET	3000 / Tape & Reel		
NTHD5904NT1G	ChipFET (Pb-Free)	3000 / Tape & Reel		
NTHD5904NT3	ChipFET	10,000 / Tape & Reel		
NTHD5904NT3G	ChipFET (Pb-Free)	10,000 / Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

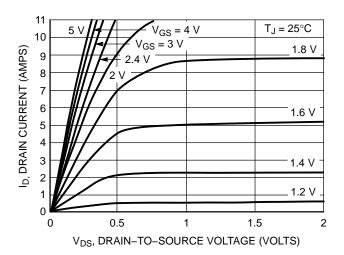


Figure 1. On-Region Characteristics

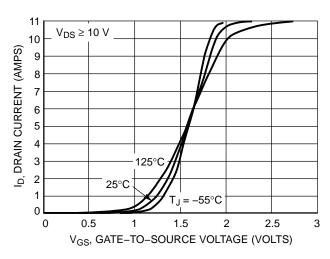


Figure 2. Transfer Characteristics

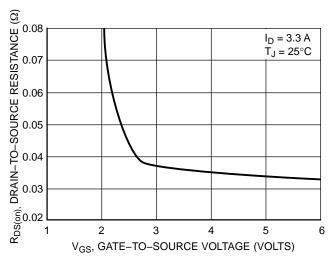


Figure 3. On-Resistance vs. Gate-to-Source Voltage

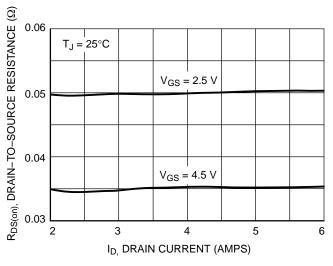


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

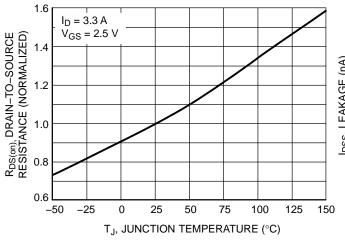


Figure 5. On–Resistance Variation with Temperature

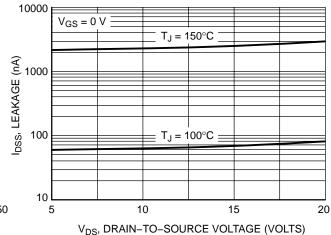
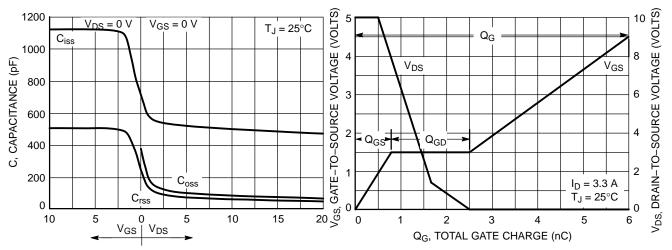



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

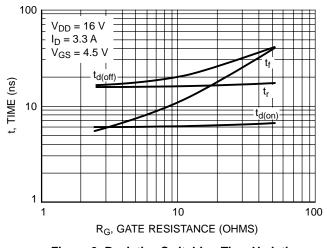


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

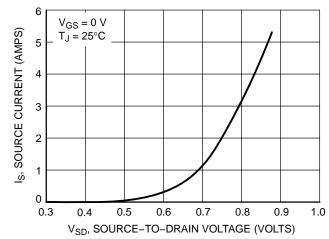
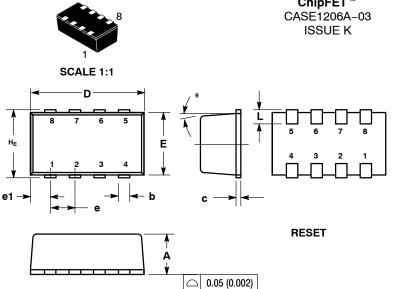
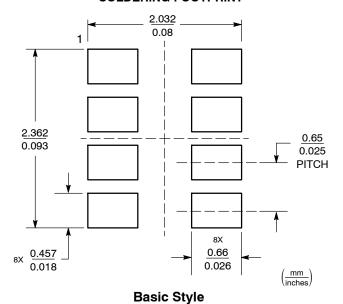



Figure 10. Diode Forward Voltage vs. Current

ChipFET™

DATE 19 MAY 2009


NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM PER SIDE. LEADFRAME TO MOLDED BODY OFFSET IN HORIZONTAL
- AND VERTICAL SHALL NOT EXCEED 0.08 MM.
 DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE BURRS.
- NO MOLD FLASH ALLOWED ON THE TOP AND BOTTOM LEAD SURFACE.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.00	1.05	1.10	0.039	0.041	0.043
b	0.25	0.30	0.35	0.010	0.012	0.014
С	0.10	0.15	0.20	0.004	0.006	0.008
D	2.95	3.05	3.10	0.116	0.120	0.122
E	1.55	1.65	1.70	0.061	0.065	0.067
е	0.65 BSC 0.025 BSC			;		
e1		0.55 BSC		0.022 BSC		;
L	0.28	0.35	0.42	0.011	0.014	0.017
HE	1.80	1.90	2.00	0.071	0.075	0.079
θ	5° NOM				5° NOM	

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:	STYLE 6:
PIN 1. DRAIN	PIN 1. SOURCE 1	PIN 1. ANODE	PIN 1. COLLECTOR	PIN 1. ANODE	PIN 1. ANODE
DRAIN	2. GATE 1	2. ANODE	2. COLLECTOR	ANODE	2. DRAIN
DRAIN	SOURCE 2	SOURCE	COLLECTOR	DRAIN	3. DRAIN
GATE	4. GATE 2	4. GATE	4. BASE	DRAIN	4. GATE
SOURCE	5. DRAIN 2	5. DRAIN	EMITTER	SOURCE	5. SOURCE
DRAIN	6. DRAIN 2	6. DRAIN	COLLECTOR	GATE	6. DRAIN
DRAIN	7. DRAIN 1	CATHODE	COLLECTOR	CATHODE	7. DRAIN
8. DRAIN	8. DRAIN 1	CATHODE	COLLECTOR	CATHODE	8. CATHODE / DRAIN

SOLDERING FOOTPRINT

GENERIC MARKING DIAGRAM*

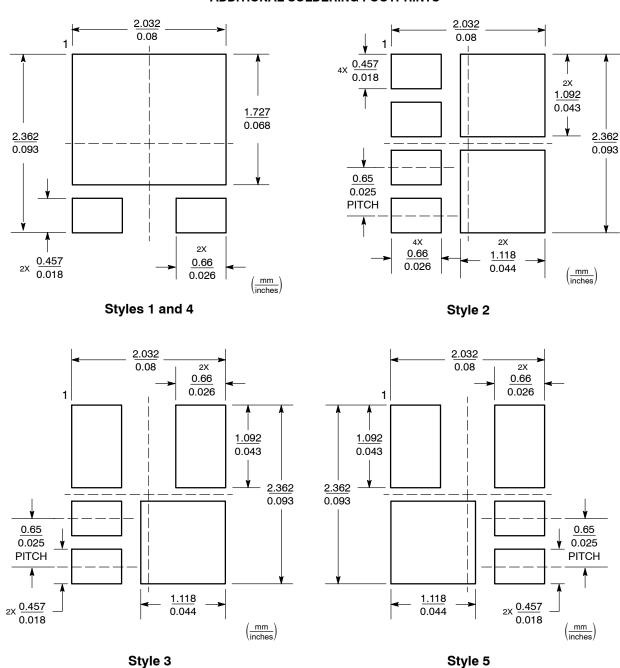
XXX = Specific Device Code

М = Month Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.


OPTIONAL SOLDERING FOOTPRINTS ON PAGE 2

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	ChipFET		PAGE 1 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 19 MAY 2009

ADDITIONAL SOLDERING FOOTPRINTS*

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	ChipFET		PAGE 2 OF 2	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales