Power MOSFET

-8 V, -5.8 A, Single P-Channel, TSOP-6

Features

- Ultra Low R_{DS(on)}
- 1.2 V R_{DS(on)} Rating
- This is a Pb–Free Device

Applications

- Load Switch
- Battery Management

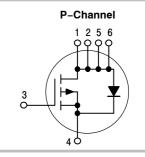
MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Param	Symbol	Value	Unit			
Drain-to-Source Voltag	е		V _{DSS}	-8.0	V	
Gate-to-Source Voltage	9		V _{GS}	±6.0	V	
Continuous Drain	Steady	$T_A = 25^{\circ}C$	۱ _D	-4.6		
Current (Note 1)	State	T _A = 85°C		-3.3	А	
	$t \le 5 s$	T _A = 25°C		-5.8		
Power Dissipation	Steady State		PD	0.97		
(Note 1)	Siale	T _A = 25°C	T _A = 25°C			W
	$t \le 5 s$			1.6		
Pulsed Drain Current	t _p = 10 μ	S	I _{DM}	-9.2	А	
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C	
Source Current (Body Diode)			I _S	-1.0	А	
Lead Temperature for So (1/8" from case for 10 s)		urposes	ΤL	260	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1 in sq [2 oz] including traces)
- Surface-mounted on FR4 board using the minimum recommended pad size. (Cu area = 0.0751 in sq)

THERMAL RESISTANCE MAXIMUM RATINGS


Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 1)	R_{\thetaJA}	128	
Junction-to-Ambient – t = 5 s (Note 1)	R_{\thetaJA}	78	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	188	

ON Semiconductor®

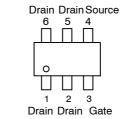
http://onsemi.com

V _{(BR)DSS} R _{DS(ON)} MAX		I _D MAX
-8 V	31 mΩ @ –4.5 V	
	38 mΩ @ −2.5 V	-4.6 A
	57 mΩ @ –1.8 V	-4.0 A
	300 mΩ @ –1.2 V	

MARKING DIAGRAM

1 TSOP-6 CASE 318G STYLE 1

AA = Device Code


Μ

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGS1135PT1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTGS1135P

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Symbol Test Condition		Min	Тур	Max	Unit
V _{(BR)DSS}	V_{GS} = 0 V, I_D = –250 μ A	-8.0			V
V _{(BR)DSS} / T _J	$I_D = -250 \ \mu A$, Ref to $25^{\circ}C$		-8.4		mV/°C
I _{DSS}	V_{GS} = 0 V, V_{DS} = -6 V			-1.0	μA
I _{GSS}	V_{DS} = 0 V, V_{GS} = ±6 V			±100	nA
	V _{(BR)DSS} V _{(BR)DSS} / T _J I _{DSS}	$\begin{array}{c c} V_{(BR)DSS} & V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A} \\ \hline V_{(BR)DSS} / & \text{I}_{D} = -250 \mu\text{A}, \text{ Ref to } 25^{\circ}\text{C} \\ \hline \text{I}_{J} & \text{I}_{DSS} & \text{V}_{GS} = 0 \text{V}, \text{V}_{DS} = -6 \text{V} \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$V_{(BR)DSS}$ $V_{GS} = 0 \text{ V}, \text{ I}_D = -250 \mu\text{A}$ -8.0 $V_{(BR)DSS}/$ $I_D = -250 \mu\text{A}, \text{ Ref to } 25^{\circ}\text{C}$ -8.4 I_{DSS} $V_{GS} = 0 \text{ V}, V_{DS} = -6 \text{ V}$ -8.4	V(BR)DSS VGS = 0 V, ID = -250 μ A -8.0 V(BR)DSS/ TJ ID = -250 μ A, Ref to 25°C -8.4 IDSS VGS = 0 V, VDS = -6 V -1.0

ON CHARACTERISTICS (Note 3)

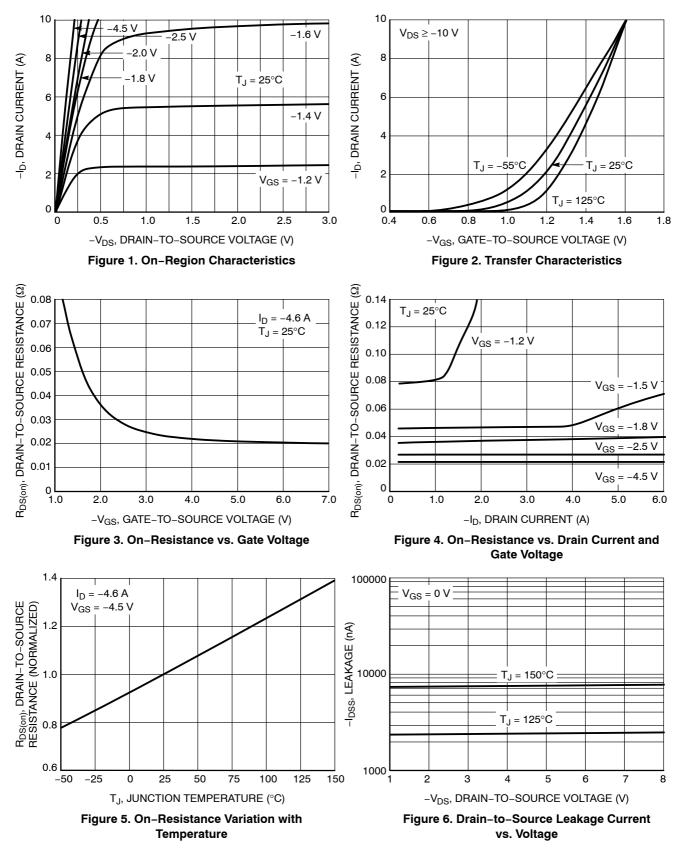
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = -250 \ \mu A$	-0.35	-0.57	-0.85	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} / T _J			2.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = -4.5 V, I _D = -4.6 A		22	31	mΩ
		V_{GS} = -2.5 V, I _D = -2.5 A		28	38	
		$V_{GS} = -1.8$ V, $I_D = -2.0$ A		37	57	
		$V_{GS} = -1.5 \text{ V}, \text{ I}_{D} = -1.0 \text{ A}$		47	73	
		$V_{GS} = -1.2$ V, $I_D = -0.1$ A		100	300	
Forward Transconductance	9 FS	$V_{DS} = -4.0 \text{ V}, \text{ I}_{D} = -3.0 \text{ A}$		1.2		S

CHARGES, CAPACITANCES AND GATE RESISTANCE

Input Capacitance	C _{ISS}		2200	pF
Output Capacitance	C _{OSS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = -6.0 V	400	
Reverse Transfer Capacitance	C _{RSS}		200	
Total Gate Charge	Q _{G(TOT)}		21	nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -8.0 \text{ V};$ $I_{D} = -2.5 \text{ A}$	0.9	
Gate-to-Source Charge	Q _{GS}	$I_{\rm D} = -2.5 {\rm A}$	2.8	
Gate-to-Drain Charge	Q _{GD}	1	3.9	

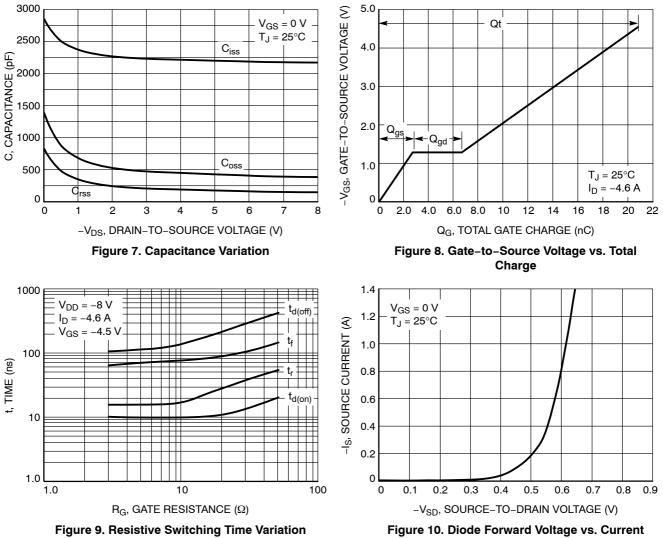
SWITCHING CHARACTERISTICS (Note 4)

Turn-On Delay Time	t _{d(ON)}		10	ns
Rise Time	t _r	V_{GS} = -4.5 V, V_{DS} = -8.0 V,	16	
Turn-Off Delay Time	t _{d(OFF)}	$I_D = -2.5 \text{ A}, \text{ R}_G = 6.2 \Omega$	128	
Fall Time	t _f		71	


DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = -1.0 A	T _J = 25°C	-0.6	-1.0	V
Reverse Recovery Time	t _{RR}			25		ns
Charge Time	ta	V_{GS} = 0 V, d_{IS}/d_t = 100 A/µs, I_S = –1.0 A		11		
Discharge Time	t _b			14		
Reverse Recovery Charge	Q _{RR}			13		nC

3. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2% 4. Switching characteristics are independent of operating junction temperatures


NTGS1135P

TYPICAL CHARACTERISTICS

NTGS1135P

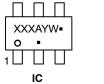
TYPICAL CHARACTERISTICS

vs. Gate Resistance

strategy and soldering details, please download th e DN Semiconductor Soldering and Mounting Techniques Reference manual, SDLDERRM/D.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.95P		PAGE 1 OF 2			
onsemi and Onsemi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves						

the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights of others.


TSOP-6 3.00x1.50x0.90, 0.95P CASE 318G **ISSUE W**

DATE 26 FEB 2024

GENERIC **MARKING DIAGRAM***

Μ

.

XXX = Specific Device Code

= Pb-Free Package

= Date Code

XXX = Specific Device Code

А =Assembly Location

= Year

Y W = Work Week

= Pb-Free Package .

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2	STYLE 3: PIN 1. ENABLE 2. N/C 3. R BOOST 4. Vz 5. V in 6. V out	STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD	STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR
STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C 5. COLLECTOR 6. EMITTER	STYLE 8: PIN 1. Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND	STYLE 9: PIN 1. LOW VOLTAGE GA 2. DRAIN 3. SOURCE 4. DRAIN 5. DRAIN 6. HIGH VOLTAGE GA	2. GND ´ 3. D(OUT)– 4. D(IN)– 5. VBUS	STYLE 11: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1/GATE 2	STYLE 12: PIN 1. I/O 2. GROUND 3. I/O 4. I/O 5. VCC 6. I/O
STYLE 13: PIN 1. GATE 1 2. SOURCE 2 3. GATE 2 4. DRAIN 2 5. SOURCE 1 6. DRAIN 1	STYLE 14: PIN 1. ANODE 2. SOURCE 3. GATE 4. CATHODE/DRAIN 5. CATHODE/DRAIN 6. CATHODE/DRAIN		TYLE 16: PIN 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE	STYLE 17: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODE 4. ANODE 5. CATHODE 6. COLLECTOR	

DOCUMENT NUMBER:	98ASB14888C Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.	TSOP-6 3.00x1.50x0.90, 0.95P			
·					

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>