Power MOSFET and Schottky Diode

-20 V, -2.5 A, P-Channel with Schottky Barrier Diode, TSOP-6

Features

- Fast Switching
- Low Gate Change
- Low R_{DS(on)}
- Low V_F Schottky Diode
- Independently Connected Devices to Provide Design Flexibility
- This is a Pb-Free Device

Applications

- DC-DC Converters
- Portable Devices like PDA's, Cellular Phones, and Hard Drives

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Pa	Parameter			Value	Unit
Drain-to-Source V	oltage		V_{DSS}	-20	V
Gate-to-Source Vo	oltage		V_{GS}	±12	V
Continuous Drain Current (Note 1)			Ι _D	-2.2 -1.6	Α
	t ≤ 5 s T _A = 25°C			-2.5	
		T _A = 25°C	P_{D}	1.0	W
(Note 1)	t ≤ 5 s			1.3	
Pulsed Drain Curre	nt	t _p = 10 μs	I _{DM}	-7.5	Α
Operating Junction and Storage Temperature			T_J , T_{STG}	–25 to 150	°C
Source Current (Body Diode)			I _S	-0.8	Α
Lead Temperature (1/8" from case for		urposes	TL	260	°C

SCHOTTKY MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V_{RRM}	20	V
DC Blocking Voltage	V_{R}	20	V
Average Rectified Forward Current	l _F	1	Α

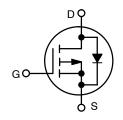
THERMAL RESISTANCE RATINGS

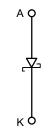
Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady-State (Note 1)	$R_{\theta JA}$	125	°C/W
Junction-to-Ambient – $t \le 5$ s (Note 1)	$R_{\theta JA}$	100	°C/W
Junction-to-Ambient Steady-State (Note 2)	$R_{\theta JA}$	235	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface Mounted on FR4 Board using the minimum recommended pad size (Cu area = 30 mm² [2 oz] including traces).

ON Semiconductor®


http://onsemi.com


P-CHANNEL MOSFET

V _{(BR)DSS}	R _{DS(on)} Max	I _D Max
-20 V	145 mΩ @ -4.5 V	-2.2 A
−20 V	200 mΩ @ -2.5 V	-1.6 A

SCHOTTKY DIODE

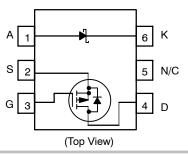
V _R Max	V _F Max	I _F Max
20 V	0.45 V	1.0 A

P-Channel MOSFET

Schottky Diode

TSOP-6 CASE 318G STYLE 15

MARKING


TC = Specific Device Code

I = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTION

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•			•	•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _I	ο = 250 μΑ	-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				14.2		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -16 V	T _J = 25°C			-1.0	μA
		$V_{DS} = -16 V$	T _J = 85°C			-10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{CS}$	_{GS} = ±12 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{DS}$	₀ = -250 μA	-0.5	-0.95	-1.5	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				3.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -4.5 V	I _D = −2.2 A		90	145	
		V _{GS} = −2.5 V	$I_D = -1.6 \text{ A}$		140	200	mΩ
Forward Transconductance	9FS	$V_{DS} = -5.0 \text{ V},$	I _D = -2.2 A		4.5		S
CHARGES, CAPACITANCES AND GATE F	RESISTANCE						
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = -10 \text{ V}$			400		
Output Capacitance	C _{OSS}				75		pF
Reverse Transfer Capacitance	C _{RSS}				40		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$ $I_D = -2.2 \text{ A}$			3.8	5.5	
Threshold Gate Charge	Q _{G(TH)}				0.5		
Gate-to-Source Charge	Q _{GS}	$I_D = -2$	2.2 A		0.9		nC
Gate-to-Drain Charge	Q_{GD}				1.0		
SWITCHING CHARACTERISTICS (Note 4)							
Turn-On Delay Time	t _{d(ON)}				7.5		
Rise Time	t _r	$V_{GS} = -4.5 \text{ V}, \text{ V}$	$I_{DS} = -10 \text{ V},$		6.2		ns
Turn-Off Delay Time	t _{d(OFF)}	$I_D = -1.0 \text{ A}, I$			14.5		
Fall Time	t _f				18.4		
DRAIN-TO-SOURCE CHARACTERISTICS	;						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V$ $I_D = -0.8 A$	T _J = 25°C		-0.8	1.2	V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, d _{IS} /d _t = 100 A/μs,			12		1
Charge Time	T _a				8.0		ns
Discharge Time	T _b	$I_{S} = -0$			4.0		1
Reverse Recovery Time	Q _{RR}				4.0		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.5 A		0.32	0.4	V
Forward Voltage		I _F = 1.0 A		0.36	0.45	
Maximum Instantaneous	I _R	V _R = 10 V		0.04	1.0	mA
Reverse Current		V _R = 20 V		0.21	5.0	

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS ($T_J = 75^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.5 A		0.27		V
Forward Voltage		I _F = 1.0 A		0.31		
Maximum Instantaneous	I _R	V _R = 10 V		0.77		mA
Reverse Current		V _R = 20 V		2.65		

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS ($T_J = 125^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.5 A		0.22		V
Forward Voltage		I _F = 1.0 A		0.27		
Maximum Instantaneous	I _R	V _R = 10 V		8.75		mA
Reverse Current		V _R = 20 V		37.37		

TYPICAL PERFORMANCE CHARACTERISTICS

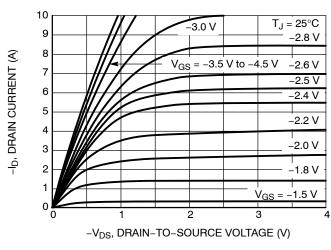
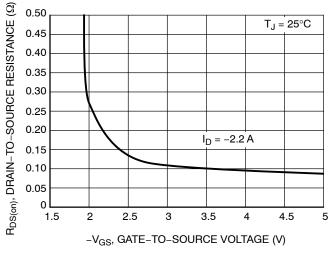



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

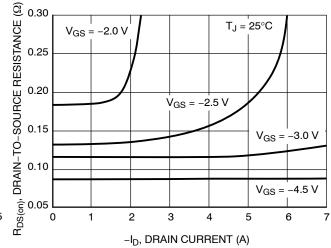
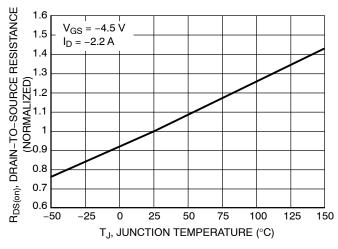



Figure 3. On-Resistance versus Gate-to-Source Voltage

Figure 4. On-Resistance versus Drain Current and Gate Voltage

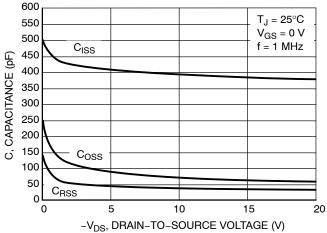


Figure 5. On–Resistance Variation with Temperature

Figure 6. Capacitance Variation

TYPICAL PERFORMANCE CHARACTERISTICS

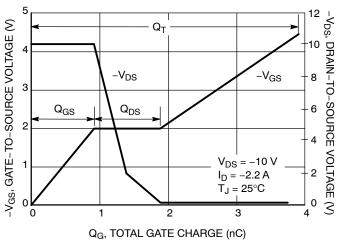


Figure 7. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

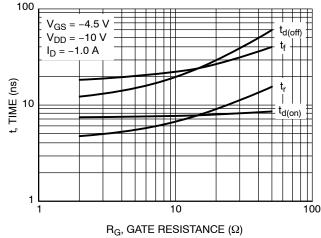


Figure 8. Resistive Switching Time Variation versus Gate Resistance

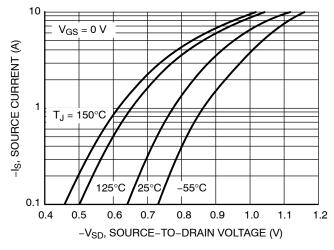


Figure 9. Diode Forward Voltage versus Current

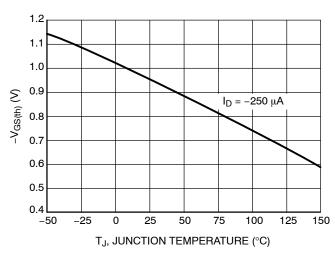


Figure 10. Threshold Voltage

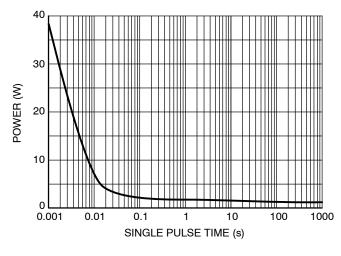


Figure 11. Single Pulse Maximum Power Dissipation

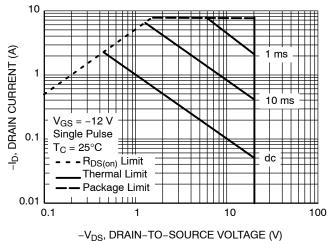


Figure 12. Maximum Rated Forward Biased Safe Operating Area

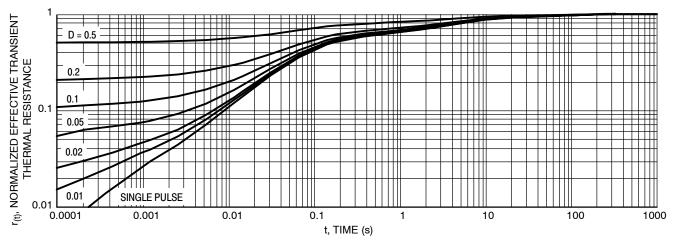


Figure 13. Thermal Response

TYPICAL SCHOTTKY CHARACTERISTICS

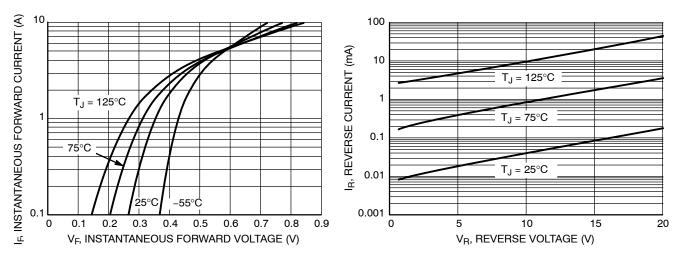


Figure 14. Typical Forward Voltage

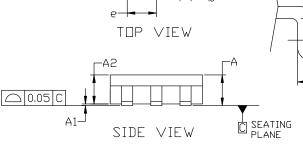
Figure 15. Typical Reverse Current

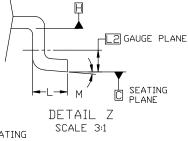
ORDERING INFORMATION

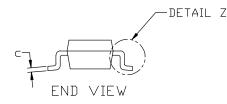
Device	Package	Shipping [†]
NTGD3147FT1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NOTE 5


TSOP-6 3.00x1.50x0.90, 0.95P **CASE 318G ISSUE W**


DATE 26 FEB 2024


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
 LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.

 5. PIN 1 INDICATOR MUST BE LOCATED IN THE INDICATED ZONE

MILLIMETERS						
DIM	MIN	NDM	MAX			
Α	0.90	1.00	1.10			
A1	0.01	0.06	0.10			
A2	0.80	0.90	1.00			
b	0.25	0.38	0.50			
	0.10	0.18	0.26			
D	2.90	3.00	3.10			
Ε	2.50	2.75	3.00			
E1	1.30	1.50	1.70			
9	0.85	0.95	1.05			
L	0.20	0.40	0.60			
L2	0.25 BSC					
М	0*		10°			

		-	-	6X -0.60
1				
3.20				6X ⊏0.95
<u> </u>				
	1			
		-	<u>►1</u> 0	.95 ITCH

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference manual, SDLDERRM/D.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.95P		PAGE 1 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

TSOP-6 3.00x1.50x0.90, 0.95P CASE 318G ISSUE W

DATE 26 FEB 2024

GENERIC MARKING DIAGRAM*

XXX M* 0 * 1 | |

XXX = Specific Device Code XXX = Specific Device Code

W = Work Week
■ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2	STYLE 3: PIN 1. ENABLE 2. N/C 3. R BOOST 4. Vz 5. V in 6. V out	STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD	STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR
STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C 5. COLLECTOR 6. EMITTER	STYLE 8: PIN 1. Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND	STYLE 9: PIN 1. LOW VOLTAGE GATE 2. DRAIN 3. SOURCE 4. DRAIN 5. DRAIN 6. HIGH VOLTAGE GATE	STYLE 10: PIN 1. D(OUT)+ 2. GND 3. D(OUT)- 4. D(IN)- 5. VBUS 6. D(IN)+	STYLE 11: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1/GATE 2	STYLE 12: PIN 1. I/O 2. GROUND 3. I/O 4. I/O 5. VCC 6. I/O
STYLE 13: PIN 1. GATE 1 2. SOURCE 2 3. GATE 2 4. DRAIN 2 5. SOURCE 1 6. DRAIN 1	STYLE 14: PIN 1. ANODE 2. SOURCE 3. GATE 4. CATHODE/DRAIN 5. CATHODE/DRAIN 6. CATHODE/DRAIN	PIN 1. ANODE PIN 2. SOURCE 3. GATE 4. DRAIN 5. N/C	E 16: 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE	STYLE 17: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODE 4. ANODE 5. CATHODE 6. COLLECTOR	

DOCUMENT NUMBER	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION	TSOP-6 3.00x1.50x0.90, 0.95P		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales