ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Power MOSFET 95 Amps, 24 Volts

N-Channel DPAK

Features

- High Power and Current Handling Capability
- Fast Switching Performance
- Low R_{DS(on)} to Minimize Conduction Loss
- Low Gate Charge to Minimize Switching Losses
- Pb-Free Packages are Available

Applications

- CPU Motherboard Vcore Applications
- High Frequency DC–DC Converters
- Motor Drives
- Bridge Circuits

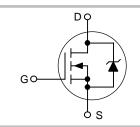
MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	24	V
Gate-to-Source Voltage	V_{GS}	±20	V
Thermal Resistance, Junction-to-Case Total Power Dissipation @ T _A = 25°C Drain Current -	$R_{ heta JC} P_D$	1.45 86	°C/W W
 Continuous @ T_A= 25°C, Limited by Package Continuous @ T_A= 25°C, Limited by Wires 	I _D I _D	95 32	A A
Thermal Resistance, Junction–to– Ambient (Note 1)	$R_{\theta JA}$	52	°C/W
- Total Power Dissipation @ T _A = 25°C - Drain Current - Continuous @ T _A = 25°C	P _D I _D	2.4 15.8	W A
Thermal Resistance, Junction–to–Ambient (Note 2)	$R_{\theta JA}$	100	°C/W
- Total Power Dissipation @ T _A = 25°C - Drain Current - Continuous @ T _A = 25°C	P _D I _D	1.25 12	W A
Operating Junction and Storage Temperature	T _J , T _{STG}	–55 to 150	°C
Continuous Source Current (Body Diode)	I _S	45	Α
Single Pulse Drain-to-Source Avalanche Energy – (V_{DD} = 25 V, V_{G} = 10, I_{PK} = 13 A, L = 1 mH, R_{G} = 25 Ω)	E _{AS}	84	mJ
Lead Temperature for Soldering Purposes (1/8 in from case for 10 seconds)	TL	260	ç

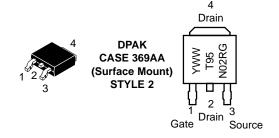
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq

- [1 oz] including traces).
- 2. Surface mounted on FR4 board using the minimum recommended pad size (Cu area = 0.412 in sq).

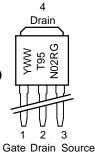


ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} TYP	I _D MAX*
24 V	4.5 mΩ @ 10 V	95 A
24 V	5.9 mΩ @ 4.5 V	95 A

*ID MAX in the product summary table is continuous and steady at 25°C.



MARKING DIAGRAMS & PIN ASSIGNMENTS

DPAK CASE 369D (Straight Lead) STYLE 2

= Year WW = Work Week T95N02R = Device Code = Pb-Free Package

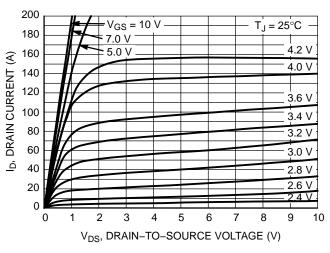
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	1.45	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{ heta JA}$	52	
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	100	

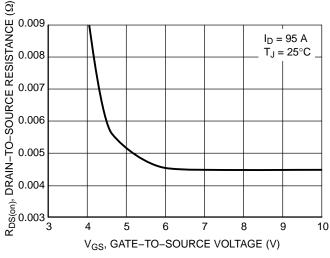
^{3.} Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).
4. Surface mounted on FR4 board using the minimum recommended pad size (Cu area = 0.412 in sq).


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	on	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				•	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		24	29		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T				15		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 20 V	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$			1.5 10	μΑ
Gate-to-Source Leakage	I _{GSS}	V _{DS} = 0 V, V _{GS} =				±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 2$	250 μΑ	1.0		2.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.0		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D =$: 10 A		5.9	8.0	mΩ
		V _{GS} = 10 V, I _D =	20 A		4.5	5.0	1
Forward Transconductance	gFS	$V_{GS} = 10 \text{ V}, I_{D} =$	10 A		30		S
CHARGES, CAPACITANCES AND GATE	RESISTANCE						
Input Capacitance	C _{ISS}				2400		pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz, } V_{DS} = 20 \text{ V}$			1020		
Reverse Transfer Capacitance	C _{RSS}				390		1
Total Gate Charge	Q _T				21		nC
	Q_{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 10$	V; I _D = 10 A		4.4		
	Q_{GD}				9.1		
SWITCHING CHARACTERISTICS							
Turn-on Delay Time	t _{d(on)}				10		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DD} :	= 10 V,		82		
Turn-off Time	t _{d(off)}	$I_D = 30 \text{ A}, R_G = 3 \Omega$			26		
Fall Time	t _f				70		
DRAIN-SOURCE DIODE CHARACTERIS	STICS						
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 20 \text{ A}$	$T_J = 25^{\circ}C$		0.83	1.2	V
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } d_{ISD}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 20 \text{ A}$			45		ns
Charge Time	Ta				20		
Discharge Time	T _b				30]

^{5.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

TYPICAL CHARACTERISTICS


220

 $V_{DS} \ge 10 \text{ V}$ 200 180 ID, DRAIN CURRENT (A) 160 140 120 100 80 T_J = 100°C 60 40 = 25°C 20 $T_J = -55^{\circ}C$ 0 4 5 6 V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

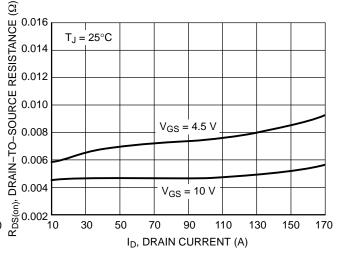
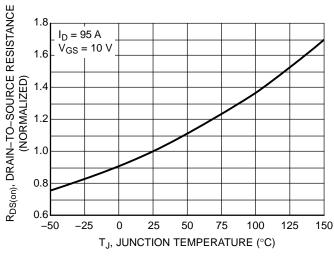



Figure 3. On–Resistance versus Gate–to–Source Voltage

Figure 4. On-Resistance versus Drain Current and Gate Voltage

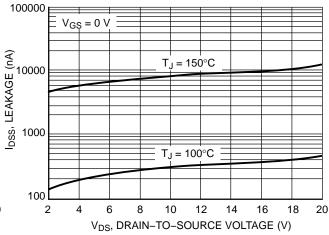


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL CHARACTERISTICS

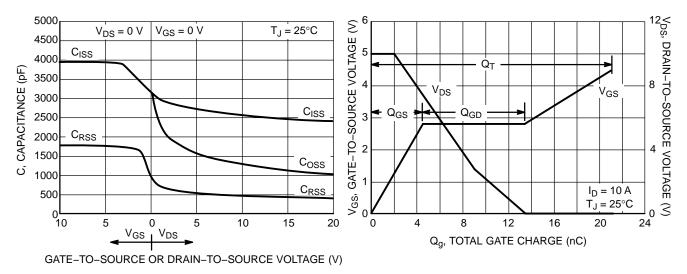


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

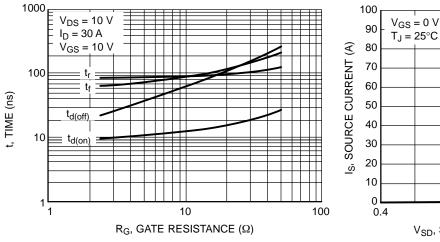


Figure 9. Resistive Switching Time Variation versus Gate Resistance

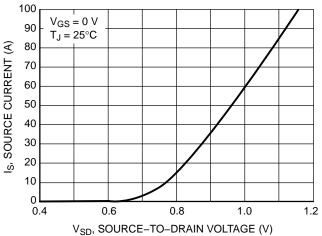
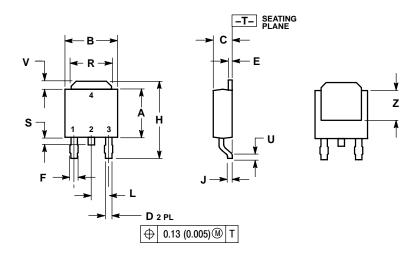


Figure 10. Diode Forward Voltage versus
Current

ORDERING INFORMATION

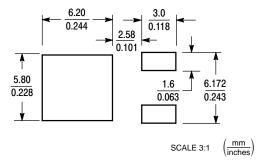

Device	Package	Shipping [†]
NTD95N02R	DPAK	75 Units / Rail
NTD95N02RG	DPAK (Pb-Free)	75 Units / Rail
NTD95N02R-001	DPAK	75 Units / Rail
NTD95N02R-001G	DPAK (Pb-Free)	75 Units / Rail
NTD95N02RT4	DPAK	2500 Units / Tape & Reel
NTD95N02RT4G	DPAK (Pb-Free)	2500 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE)

CASE 369AA-01 ISSUE A

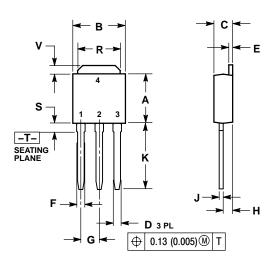


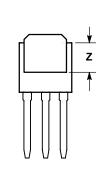
- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	METERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.22	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.025	0.035	0.63	0.89	
E	0.018	0.024	0.46	0.61	
F	0.030	0.045	0.77	1.14	
Н	0.386	0.410	9.80	10.40	
J	0.018	0.023	0.46	0.58	
L	0.090	BSC	2.29 BSC		
R	0.180	0.215	4.57	5.45	
S	0.024	0.040	0.60	1.01	
U	0.020		0.51		
٧	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

SOLDERING FOOTPRINT*




^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DPAK

CASE 369D-01 ISSUE B

NOTES:

- DIMENSIONING AND TOLERANCING PER
 ANSI V14 5M 1982
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		S MILLIMETE	
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090 BSC		2.29	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2:

PIN 1. GATE

- 2. DRAIN
- 3. SOURCE
- . DRAIN

ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative