<u>MOSFET</u> – Power, N-Channel

60 V, 98 A, 5.7 m Ω

Features

- Low R_{DS(on)}
- High Current Capability
- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

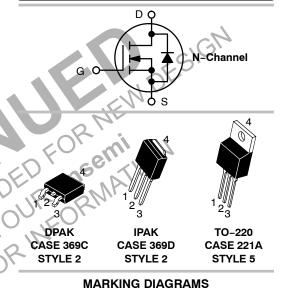
Param	Symbol	Value	Unit		
Drain-to-Source Voltag	е		V _{DSS}	60	V
Gate-to-Source Voltage	ə – Contir	nuous	V _{GS}	±20	V
Gate-to-Source Voltage - Non-Repetitive (t _p <	V _{GS}	±30	v		
Continuous Drain		$T_C = 25^{\circ}C$	Ι _D	98	А
Current (R _{θJC}) (Note 1)	Steady State	$T_C = 100^{\circ}C$		69	
Power Dissipation ($R_{\theta JC}$)	$T_{\rm C} = 25^{\circ}{\rm C}$		PD	115	W
Pulsed Drain Current	t _p :	= 10 μs	I _{DM}	335	А
Operating Junction and	T _J , T _{stg}	-55 to 175	C		
Source Current (Body D)iode)		ls	96	A
Single Pulse Drain-to-S Energy (L = 0.3 mH)	Eas	205	mJ		
Lead Temperature for S (1/8" from case for 10 s	Purposes	Ť, N	260	°C	

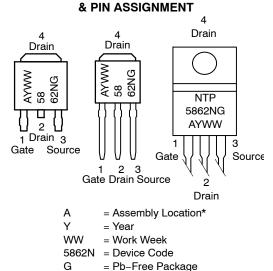
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	1.3	°C/W
Junction-to-Ambient - Steady State (Note 2)	R _{0.1A}	37	

1. Limited by package to 50 A continuous.


2. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
60 V	5.7 m Ω @ 10 V	98 A

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

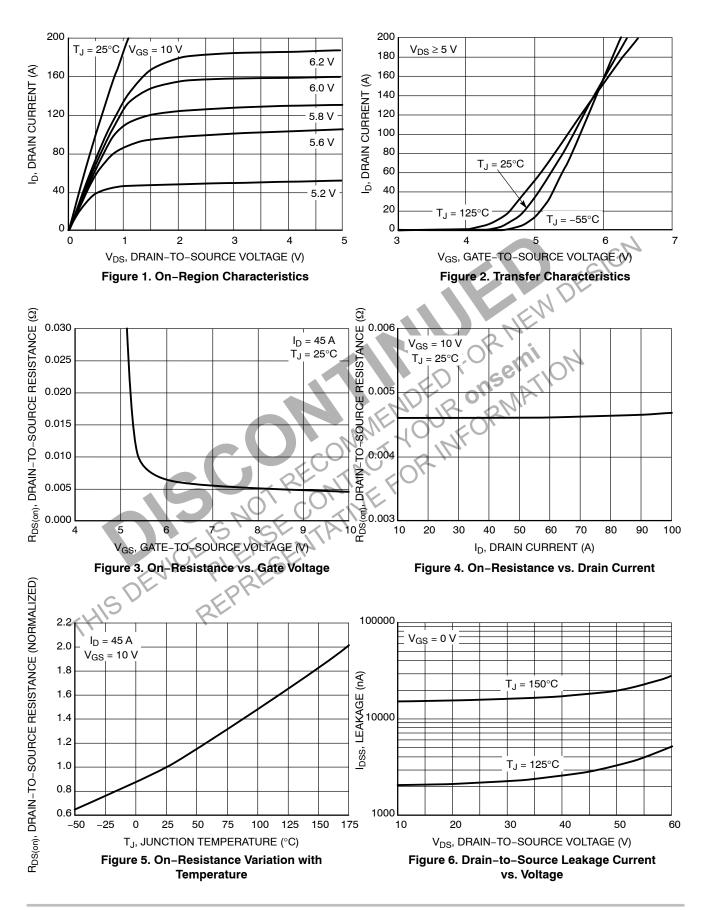
See detailed ordering and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

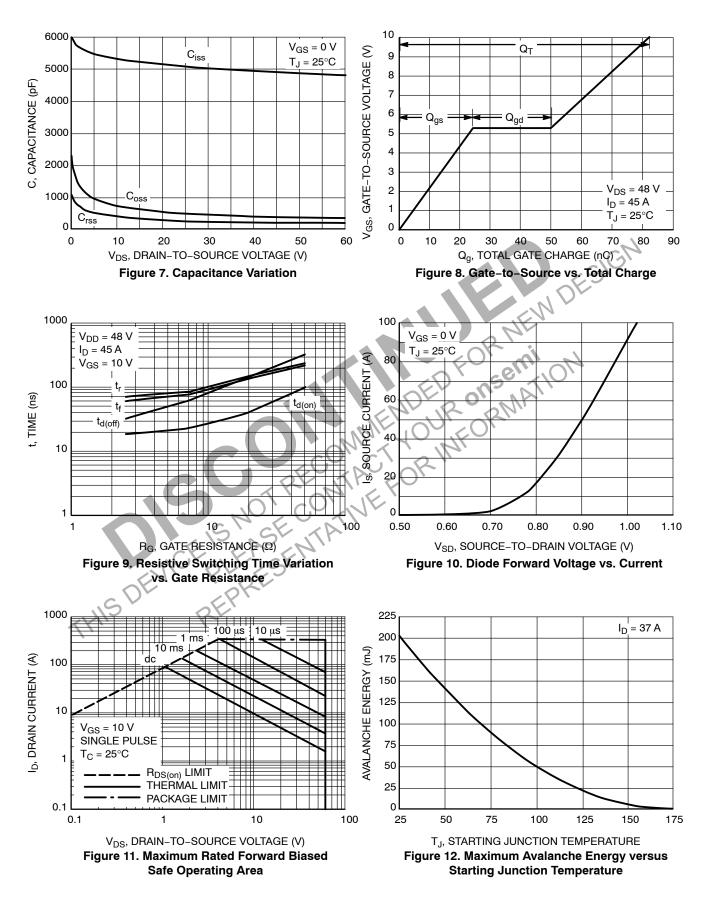
Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	1			1			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D =$	= 250 μA	60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				47		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 60 V			1.0 100	μΑ	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	₃ = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 250 μA	2.0		4.0	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-9.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _I	₀ = 45 A		4.4	5.7	mΩ
Forward Transconductance	gFS	V _{DS} = 15 V, I _I	₀ = 10 A		18	G	S
CHARGES, CAPACITANCES AND GAT	FE RESISTANC	ES				S	
Input Capacitance	C _{iss}			5050	6000	pF	
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = V _{DS} = 25	1.0 MHz, 5 V		500	600	
Reverse Transfer Capacitance	C _{rss}		24	300	420		
Total Gate Charge	Q _{G(TOT)}		О, ч	82	b.	nC	
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _E	,50	5.2			
Gate-to-Source Charge	Q _{GS}	Ib = 45 Å		D	24		
Gate-to-Drain Charge	Q _{GD}			OK.	27		
Gate Resistance	R _G	MILL YOUNE)	0.6		Ω
SWITCHING CHARACTERISTICS (Not	e 4)		R"				
Turn-On Delay Time	t _{d(on)}	E JIN F	0		18		ns
Rise Time	tr	$O_{\text{GS}} \neq 10 \text{ V}, \text{V}_{\text{E}}$	_D = 48 V,		70		
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D} = 45 \rm A, R_{\rm G}$	= 2.5 Ω		35		
Fall Time		2			60		
DRAIN-SOURCE DIODE CHABACTER	ristics S						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 45 A	$T_J = 25^{\circ}C$		0.9	1.2	V
IS of		I _S = 45 A	$T_J = 100^{\circ}C$		0.75		
Reverse Recovery Time	t _{RR}				38		ns
Charge Time	ta	V _{GS} = 0 V, dls/dt			20		
Discharge Time	tb	I _S = 45			18		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

40


nC

Reverse Recovery Charge


4. Switching characteristics are independent of operating junction temperatures.

 Q_{RR}

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

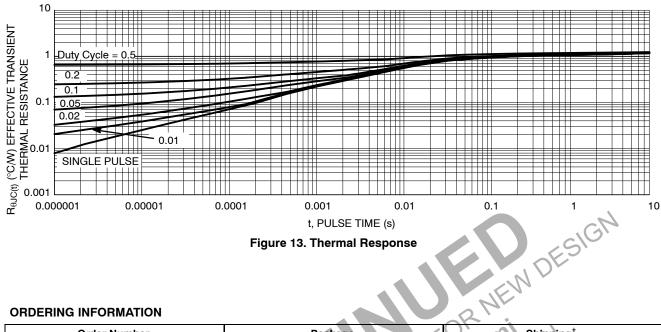
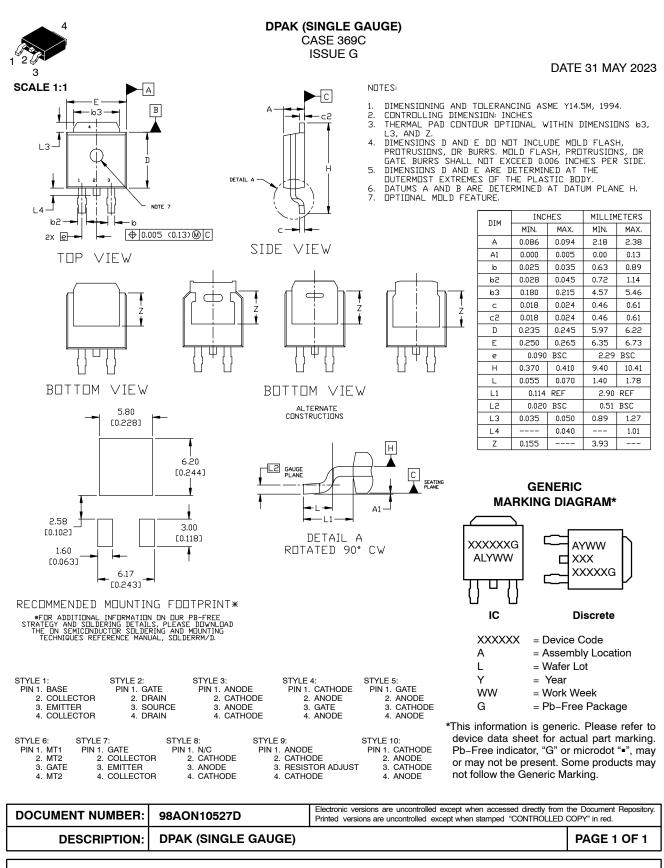


Figure 13. Thermal Response

ORDERING INFORMATION

Order Number	Package Shipping [†]
NTD5862N-1G	IPAK (Straight Lead) (Pb-Free) 75 Units / Rail
NTD5862NT4G	DPAK (Pb-Free) 2500 / Tape & Reel
NTP5862NG	TO-220 (Pb-Free) 50 Units / Rail

ung part orientation +For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


DPAK INSERTION MOUNT CASE 369 ISSUE O DATE 02 JAN 2000 SCALE 1:1 С $B \rightarrow$ NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. Е R MILLIMETERS INCHES л DIM MIN MAX MIN MAX A 0.235 0.250 B 0.250 0.265 5.97 6.35 Δ 6.35 6.73 C 0.086 0.094 D 0.027 0.035 2.19 0.69 2.38 2 3 0.88 S E 0.033 0.040 F 0.037 0.047 0.84 1.01 0.94 -T-1.19 G 0.090 BSC 2.29 BSC SEATING H 0.034 0.040 J 0.018 0.023 0.87 1.01 0.46 0.58 K 0.350 0.380 8.89 9.65 **R** 0.175 0.215 4.45 5.46 0.050 0.090 1.27 J S 2.28 F V 0.030 0.050 н 0.77 1.27 D 3 PL G 🔫 ⊕ 0.13 (0.005) M T

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		STYLE 5:		STYLE 6:	
PIN 1.	BASE	PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	GATE	PIN 1.	MT1
2.	COLLECTOR	2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE	2.	MT2
3.	EMITTER	3.	SOURCE	3.	ANODE	3.	GATE	3.	CATHODE	3.	GATE
4.	COLLECTOR	4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE	4.	MT2

	DOCUMENT NUMBER:	UMBER: 98ASB42319B	98ASB42319B Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED CO		
DESCRIPTION: DPAK INSERTION MOUNT PAGE 1 OF	DESCRIPTION:	RIPTION: DPAK INSERTION MOUNT		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>