NTD3055L170, NVD3055L170

MOSFET – Power, N-Channel, Logic Level, DPAK/IPAK
9.0 A, 60 V

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Features
- NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These are Pb–Free Devices

Typical Applications
- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS \((T_J = 25°C \text{ unless otherwise noted}) \)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-to–Source Voltage</td>
<td>(V_{DSS})</td>
<td>60</td>
<td>Vdc</td>
</tr>
<tr>
<td>Drain-to–Gate Voltage</td>
<td>(V_{DGR})</td>
<td>60</td>
<td>Vdc</td>
</tr>
<tr>
<td>Gate-to–Source Voltage</td>
<td>(V_GS)</td>
<td>±15</td>
<td>Vdc</td>
</tr>
<tr>
<td></td>
<td>(V_GS)</td>
<td>±20</td>
<td>Vdc</td>
</tr>
<tr>
<td>Drain Current</td>
<td>(I_D)</td>
<td>9.0</td>
<td>Adc</td>
</tr>
<tr>
<td></td>
<td>(I_D)</td>
<td>3.0</td>
<td>Adc</td>
</tr>
<tr>
<td></td>
<td>(I_{DM})</td>
<td>27</td>
<td>Apk</td>
</tr>
<tr>
<td>Total Power Dissipation @ (T_A = 25°C)</td>
<td>(P_D)</td>
<td>28.5</td>
<td>W</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>0.19</td>
<td>W/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>W</td>
</tr>
<tr>
<td>Total Power Dissipation @ (T_A = 25°C) (Note 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Power Dissipation @ (T_A = 25°C) (Note 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating and Storage Temperature Range</td>
<td>(T_J, T_{stg})</td>
<td>−55 to 175</td>
<td>°C</td>
</tr>
<tr>
<td>Single Pulse Drain–to–Source Avalanche Energy – Starting (T_J = 25°C)</td>
<td>(E_{AS})</td>
<td>30</td>
<td>mJ</td>
</tr>
<tr>
<td>((V_{DD} = 25 \text{ Vdc}, V_{GSS} = 5.0 \text{ Vdc}, L = 1.0 \text{ mH}, I_{L(pk)} = 7.75 \text{ A}, V_{DS} = 60 \text{ Vdc})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>(R_{JUC})</td>
<td>5.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>– Junction–to–Case</td>
<td>(R_{JUA})</td>
<td>71.4</td>
<td>°C/W</td>
</tr>
<tr>
<td>– Junction–to–Ambient (Note 1)</td>
<td>(R_{JUA})</td>
<td>100</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Lead Temperature for Soldering Purposes, 1/8” from case for 10 seconds</td>
<td>(T_L)</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

9.0 AMPERES, 60 VOLTS
\(R_{DS(on)} = 170 \text{ mΩ} \)

MARKING DIAGRAMS & PIN ASSIGNMENTS

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

© Semiconductor Components Industries, LLC, 2014

May, 2019 – Rev. 7
1. When surface mounted to an FR4 board using 0.5 sq in pad size.
2. When surface mounted to an FR4 board using minimum recommended pad size.
ELECTRICAL CHARACTERISTICS *(T_J = 25°C unless otherwise noted)*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-to-Source Breakdown Voltage (Note 3)</td>
<td>V_{BR}DSS</td>
<td>60</td>
<td>–</td>
<td>–</td>
<td>Vdc</td>
</tr>
<tr>
<td>Temperature Coefficient (Positive)</td>
<td>–</td>
<td>–</td>
<td>53.6</td>
<td>–</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_DSS</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td>μAdc</td>
</tr>
<tr>
<td>(V_DS = 60 Vdc, V_GS = 0 Vdc, T_J = 150°C)</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate–Body Leakage Current (V_GS = ±15 Vdc, V_DS = 0 Vdc)</td>
<td>I_GSS</td>
<td>–</td>
<td>–</td>
<td>±100</td>
<td>nAdc</td>
</tr>
<tr>
<td>ON CHARACTERISTICS (Note 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Threshold Voltage (Note 3)</td>
<td>V_{GS(th)}</td>
<td>1.0</td>
<td>1.7</td>
<td>2.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Threshold Temperature Coefficient (Negative)</td>
<td>R_D(on)</td>
<td>–</td>
<td>153</td>
<td>170</td>
<td>mΩ</td>
</tr>
<tr>
<td>Static Drain–to–Source On–Resistance (Note 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static Drain–to–Source On–Voltage (Note 3)</td>
<td>V_{DS(on)}</td>
<td>–</td>
<td>1.8</td>
<td>2.1</td>
<td>Vdc</td>
</tr>
<tr>
<td>Forward Transconductance (Note 3) (V_DS = 8.0 Vdc, I_DS = 6.0 Adc)</td>
<td>g_FS</td>
<td>–</td>
<td>7.3</td>
<td>–</td>
<td>mhos</td>
</tr>
<tr>
<td>DYNAMIC CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_{iss}</td>
<td>–</td>
<td>195</td>
<td>275</td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_{oss}</td>
<td>–</td>
<td>70</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Transfer Capacitance</td>
<td>C_{rss}</td>
<td>–</td>
<td>29</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>SWITCHING CHARACTERISTICS (Note 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn–On Delay Time</td>
<td>t_{d(on)}</td>
<td>–</td>
<td>9.7</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_r</td>
<td>–</td>
<td>69</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Turn–Off Delay Time</td>
<td>t_{d(off)}</td>
<td>–</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td>–</td>
<td>38</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Gate Charge</td>
<td>Q_T</td>
<td>–</td>
<td>4.7</td>
<td>10</td>
<td>nC</td>
</tr>
<tr>
<td>Q_1</td>
<td>–</td>
<td>1.4</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_2</td>
<td>–</td>
<td>2.9</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOURCE–DRAIN DIODE CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward On–Voltage</td>
<td>V_{SD}</td>
<td>–</td>
<td>0.98</td>
<td>1.25</td>
<td>Vdc</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>t_{rr}</td>
<td>–</td>
<td>29.8</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse Recovery Stored Charge</td>
<td>Q_{RR}</td>
<td>–</td>
<td>0.031</td>
<td>–</td>
<td>μC</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.

4. Switching characteristics are independent of operating junction temperatures.
Figure 1. On–Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On–Resistance versus Gate to Source Voltage

Figure 4. On–Resistance versus Drain Current and Gate Voltage

Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain–to–Source Leakage Current versus Voltage
POWER MOSFET SWITCHING

Switching behavior is most easily modeled and predicted by recognizing that the power MOSFET is charge controlled. The lengths of various switching intervals (Δt) are determined by how fast the FET input capacitance can be charged by current from the generator.

The published capacitance data is difficult to use for calculating rise and fall because drain–gate capacitance varies greatly with applied voltage. Accordingly, gate charge data is used. In most cases, a satisfactory estimate of average input current (I(G(AV))) can be made from a rudimentary analysis of the drive circuit so that

\[t = \frac{Q}{I(G(AV))} \]

During the rise and fall time interval when switching a resistive load, VGS remains virtually constant at a level known as the plateau voltage, VSGP. Therefore, rise and fall times may be approximated by the following:

\[t_r = \frac{Q_2 \times R_G}{(V_{GG} - V_{GSP})} \]
\[t_f = \frac{Q_2 \times R_G}{V_{GSP}} \]

where

- VGG = the gate drive voltage, which varies from zero to VGG
- RG = the gate drive resistance
- and Q2 and VGSP are read from the gate charge curve.

During the turn–on and turn–off delay times, gate current is not constant. The simplest calculation uses appropriate values from the capacitance curves in a standard equation for voltage change in an RC network. The equations are:

\[t_{d(on)} = R_G \times C_{iss} \ln \left(\frac{V_{GG}}{(V_{GG} - V_{GSP})} \right) \]
\[t_{d(off)} = R_G \times C_{iss} \ln \left(V_{GG}/V_{GSP} \right) \]

The capacitance (Ciss) is read from the capacitance curve at a voltage corresponding to the off–state condition when calculating td(on) and is read at a voltage corresponding to the on–state when calculating td(off).

At high switching speeds, parasitic circuit elements complicate the analysis. The inductance of the MOSFET source lead, inside the package and in the circuit wiring which is common to both the drain and gate current paths, produces a voltage at the source which reduces the gate drive current. The voltage is determined by Ldi/dt, but since di/dt is a function of drain current, the mathematical solution is complex. The MOSFET output capacitance also complicates the mathematics. And finally, MOSFETs have finite internal gate resistance which effectively adds to the resistance of the driving source, but the internal resistance is difficult to measure and, consequently, is not specified.

The resistive switching time variation versus gate resistance (Figure 9) shows how typical switching performance is affected by the parasitic circuit elements. If the parasitics were not present, the slope of the curves would maintain a value of unity regardless of the switching speed. The circuit used to obtain the data is constructed to minimize common inductance in the drain and gate circuit loops and is believed readily achievable with board mounted components. Most power electronic loads are inductive; the data in the figure is taken with a resistive load, which approximates an optimally snubbed inductive load. Power MOSFETs may be safely operated into an inductive load; however, snubbing reduces switching losses.
SAFE OPERATING AREA

The Forward Biased Safe Operating Area curves define the maximum simultaneous drain-to-source voltage and drain current that a transistor can handle safely when it is forward biased. Curves are based upon maximum peak junction temperature and a case temperature (T_C) of 25°C. Peak repetitive pulsed power limits are determined by using the thermal response data in conjunction with the procedures discussed in AN569, “Transient Thermal Resistance – General Data and Its Use.”

Switching between the off-state and the on-state may traverse any load line provided neither rated peak current (I_{DM}) nor rated voltage (V_{DSS}) is exceeded and the transition time (t_{tr},t_{f}) do not exceed 10µs. In addition the total power averaged over a complete switching cycle must not exceed (T_{J(MAX)} - T_{C})/(R_{0JC}).

A Power MOSFET designated E-FET can be safely used in switching circuits with unclamped inductive loads. For reliable operation, the stored energy from circuit inductance dissipated in the transistor while in avalanche must be less than the rated limit and adjusted for operating conditions differing from those specified. Although industry practice is to rate in terms of energy, avalanche energy capability is not a constant. The energy rating decreases non-linearly with an increase of peak current in avalanche and peak junction temperature.

Although many E-FETs can withstand the stress of drain-to-source avalanche at currents up to rated pulsed current (I_{DM}), the energy rating is specified at rated continuous current (I_D), in accordance with industry custom. The energy rating must be derated for temperature as shown in the accompanying graph (Figure 12). Maximum energy at currents below rated continuous I_D can safely be assumed to equal the values indicated.
SAFE OPERATING AREA

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

Figure 13. Thermal Response

Figure 14. Diode Reverse Recovery Waveform
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTD3055L170G</td>
<td>DPAK (Pb−Free)</td>
<td>75 Units / Rail</td>
</tr>
<tr>
<td>NTD3055L170−1G</td>
<td>IPAK (Pb−Free)</td>
<td>75 Units / Rail</td>
</tr>
<tr>
<td>NTD3055L170T4G</td>
<td>DPAK (Pb−Free)</td>
<td>2500 / Tape & Reel</td>
</tr>
<tr>
<td>NVD3055L170T4G*</td>
<td>DPAK (Pb−Free)</td>
<td>2500 / Tape & Reel</td>
</tr>
<tr>
<td>NVD3055L170T4G−VF01*</td>
<td>DPAK (Pb−Free)</td>
<td>2500 / Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q101 Qualified and PPAP Capable
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)
CASE 369C
ISSUE F

DATE 21 JUL 2015

NOTES:
2. CONTROLLING DIMENSION: INCHES.
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS L3 and L2.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD
 FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.008 INCHES PER SIDE.
5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
7. OPTIONAL MOLD FEATURE.

SCALE 1:1

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. Emitter
4. COLLECTOR

STYLE 2:
PIN 1. GATE
2. DRAIN
3. SOURCE
4. DRAIN

STYLE 3:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. CATHODE

STYLE 4:
PIN 1. CATHODE
2. ANODE
3. CATHODE
4. ANODE

STYLE 5:
PIN 1. GATE
2. ANODE
3. CATHODE
4. ANODE

STYLE 6:
PIN 1. MT1
2. MT2
3. GATE
4. COLLECTOR

STYLE 7:
PIN 1. GATE
2. COLLECTOR
3. Emitter
4. COLLECTOR

STYLE 8:
PIN 1. N/C
2. SOURCE
3. ANODE
4. DRAIN

STYLE 9:
PIN 1. N/C
2. CATHODE
3. RESISTOR ADJUST
4. CATHODE

STYLE 10:
PIN 1. CATHODE
2. ANODE
3. CATHODE
4. ANODE

SOLDERING FOOTPRINT*

X X X X X X X
A L Y W W
X X X X X G

IC
Discrete

XXXXXX = Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

SCALE 3:1

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER: 98AON10527D
DESCRIPTION: DPAK (SINGLE GAUGE)

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2018 www.onsemi.com