onsemi

MOSFET - Single N-Channel

100 V, 9.0 mΩ, 60 A NTBS9D0N10MC

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- Lowers Switching Noise/EMI
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- BMS/Storage, Home Automation

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter		Symbol	Value	Unit	
Drain-to-Source Voltage		V _{DSS}	100	V	
Gate-to-Source Voltage		V _{GS}	±20	V	
Continuous Drain Current $R_{\theta JC}$ (Note 2)	Steady State		۱ _D	60	A
Power Dissipation $R_{\theta JC}$ (Note 2)			PD	68	W
Continuous Drain Current R _{θJA} (Notes 1, 2)	Steady State	, <u>, , , , , , , , , , , , , , , , , , </u>	Ι _D	14	A
Power Dissipation $R_{\theta JA}$ (Notes 1, 2)			P _D	3.8	W
Pulsed Drain Current	$T_{C} = 25^{\circ}C, t_{p} = 100 \ \mu s$		I _{DM}	239	А
Operating Junction and Storage Temperature Range		T _J , T _{stg}	–55 to +175	°C	
Source Current (Body Diode)		۱ _S	57	А	
Single Pulse Drain-to-Source Avalanche Energy (I _L = 11 A _{pk} , L = 3 mH)		E _{AS}	181.5	mJ	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using a 1 in², 2 oz. Cu pad.

The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX		
100 V	9.0 mΩ @ 10 V	60 A		

N-CHANNEL MOSFET

= Year

Y

WW = Work Week

ZZ = Lot Traceability

NTBS9D0N10MC = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTBS9D0N10MC	D ² PAK (Pb-Free)	800 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ ext{ heta}JC}$	2.2	°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)	$R_{ hetaJA}$	40	

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA		100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(BR)DSS}/T_J$	$I_D = 250 \ \mu A$, referenced to 25°C			56		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 80 V	$T_J = 25^{\circ}C$			1	μA
			T _J = 150°C			100	μA
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = ±20 V, V _{DS} = 0 V				±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 131 μA	2.0	3.0	4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	$I_D = 131 \ \mu$ A, referenced to 25°C			-9.6		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 23 A			7.8	9.0	mΩ
		V _{GS} = 6 V, I _D = 12 A			12	22.2	
Forward Transconductance	9 _{FS}	V _{DS} = 10 V, I _D = 23 A			59		S
Gate-Resistance	R _G	T _A = 25°C			0.6		Ω
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 50 V			1695		pF
Output Capacitance	C _{OSS}				935		
Reverse Transfer Capacitance	C _{RSS}				13		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 50 V, I _D = 23 A			23		nC
Threshold Gate Charge	Q _{G(TH)}				5		-
Gate-to-Source Charge	Q _{GS}				8		
Gate-to-Drain Charge	Q _{GD}				5		
Output Charge	Q _{OSS}	V _{DS} = 50 V, V _{GS} = 0 V			59		
SWITCHING CHARACTERISTICS, V _{GS} = 10	V (Note 3)						
Turn-On Delay Time	t _{d(ON)}				15		ns
Rise Time	t _r	Voo - 10 V Vo	- 50 V		6		
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = 10 V, V_{DS} = 50 V, I_{D} = 23 A, R_{G} = 6 Ω			21		-
Fall Time	t _f				7		
DRAIN-SOURCE DIODE CHARACTERISTIC							
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 23 A, T _J = 25°C			0.87	1.2	V
		V _{GS} = 0 V, I _S = 23 A			0.72		-
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 V, dI_S/dt = 300 A/\mu s,$ $I_S = 12 A$		L	29		ns
Reverse Recovery Charge	Q _{RR}				61		nC
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dI _S /dt = 1000 A/µs, I _S = 12 A			23		ns
Reverse Recovery Charge	Q _{RR}				147		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Switching characteristics are independent of operating junction temperature

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Figure 13. Transient Thermal Impedance

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>