onsemi

NPN Transistor with Zener Diode

NPN Transistor with Zener Diode

NSM6056MT1G

Features

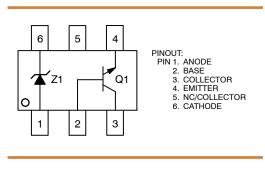
• These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Driving Circuit
- Switching Applications

MAXIMUM RATINGS – NPN TRANSISTOR

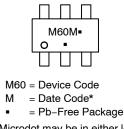
Rating	Symbol	Value	Unit				
Collector – Emitter Voltage	V _{CEO}	40	V				
Collector – Base Voltage	V _{CBO}	60	V				
Emitter-Base Voltage	V _{EBO}	6.0	V				
Collector Current – Continuous	Ι _C	600	mA				
Collector Current – Peak	I _{CM}	900	mA				
MAXIMUM RATINGS – ZENER DIODE							


Rating	Symbol	Value	Unit	
Forward Voltage @ I _F = 10 mA	V _F	0.9	V	

THERMAL CHARACTERISTICS

Rating	Symbol	Мах	Unit
Total Device Dissipation FR-5 Board, (Note 1) @ T _A = 25°C	PD	380	mW
Thermal Resistance from Junction-to-Ambient	$R_{\theta JA}$	328	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. FR-4 Minimum Pad.

MARKING DIAGRAM

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Device Package			
NSM6056MT1G	SC–74 (Pb–Free)	3000/Tape & Reel		

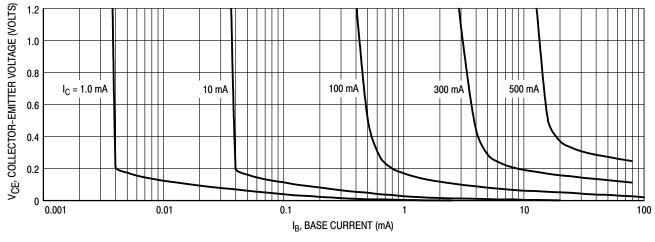
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NSM6056MT1G

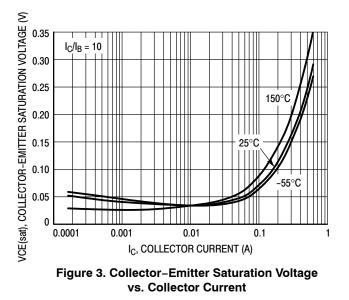
NPN TRANSISTOR – ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

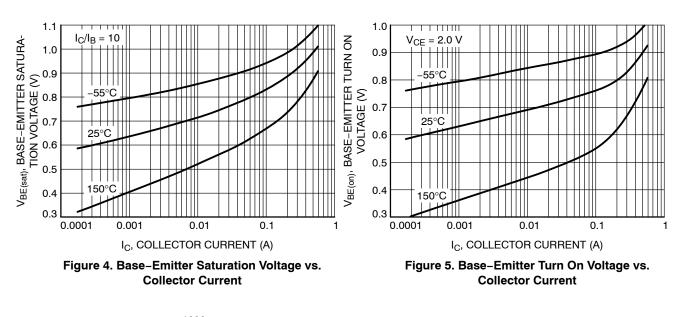
Cha	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					•
Collector – Emitter Breakdown Voltage	e (Note 3) (I _C = 1.0 mAdc, I _B = 0)	V _{(BR)CEO}	40	-	Vdc
Collector – Base Breakdown Voltage	(I _C = 0.1 mAdc, I _E = 0)	V _{(BR)CBO}	60	-	Vdc
Emitter-Base Breakdown Voltage	(I _E = 0.1 mAdc, I _C = 0)	V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current	(V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)	I _{BEV}	-	0.1	μAdc
Collector Cutoff Current	(V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)	I _{CEX}	-	0.1	μAdc
ON CHARACTERISTICS (Note 3)					
DC Current Gain		h _{FE}	20 40 80 100 40	- - 300 -	_
Collector – Emitter Saturation Voltage	(I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)	V _{CE(sat)}		0.4 0.75	Vdc
Base – Emitter Saturation Voltage	$(I_{C} = 150 \text{ mAdc}, I_{B} = 15 \text{ mAdc})$ $(I_{C} = 500 \text{ mAdc}, I_{B} = 50 \text{ mAdc})$	V _{BE(sat)}	0.75	0.95 1.2	Vdc
SMALL-SIGNAL CHARACTERISTIC	S				
Current-Gain - Bandwidth Product	(I _C = 20 mAdc, V_{CE} = 10 Vdc, f = 100 MHz)	f _T	250	-	MHz
Collector-Base Capacitance	$(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{cb}	-	6.5	pF
Emitter-Base Capacitance	$(V_{EB} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$	C _{eb}	-	30	pF
Input Impedance	$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{ie}	1.0	15	kΩ
Voltage Feedback Ratio	$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{re}	0.1	8.0	X 10 ⁻⁴
Small – Signal Current Gain	$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{fe}	40	500	-
Output Admittance	$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{oe}	1.0	30	μmhos
SWITCHING CHARACTERISTICS					
Delay Time	(V _{CC} = 30 Vdc, V _{EB} = 2.0 Vdc,	t _d	-	15	
Rise Time	$I_{\rm C} = 150 \text{ mAdc}, I_{\rm B1} = 15 \text{ mAdc})$	t _r	-	20	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc,	t _s	-	225	20
Fall Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$	t _f	-	30	ns

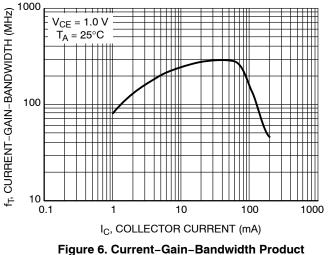
ZENER DIODE – ELECTRICAL CHARACTERISTICS (V_F = 0.9 Max @ I_F = 10 mA for all types)


	Test	$Z_{ZK} I_Z = I_Z$	Z _{ZT} I _Z = IZT @ 10%	Max IR @ VR		d _{VZ} /dt (mV/k) @ I _{ZT1} = 5 mA		C pF Max @		
Device	Current Izt mA	Min	Мах	mA Ω Max	Mod Ω Max	μA	v	Min	Max	V _R = 0 f = 1 MHz
NSM6056MT1G	5.0	5.49	5.73	200	40	1.0	2.0	-2.0	2.5	200

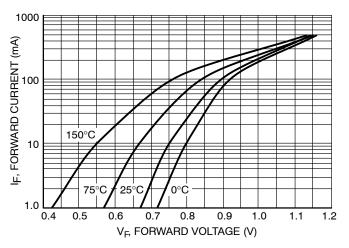
NSM6056MT1G

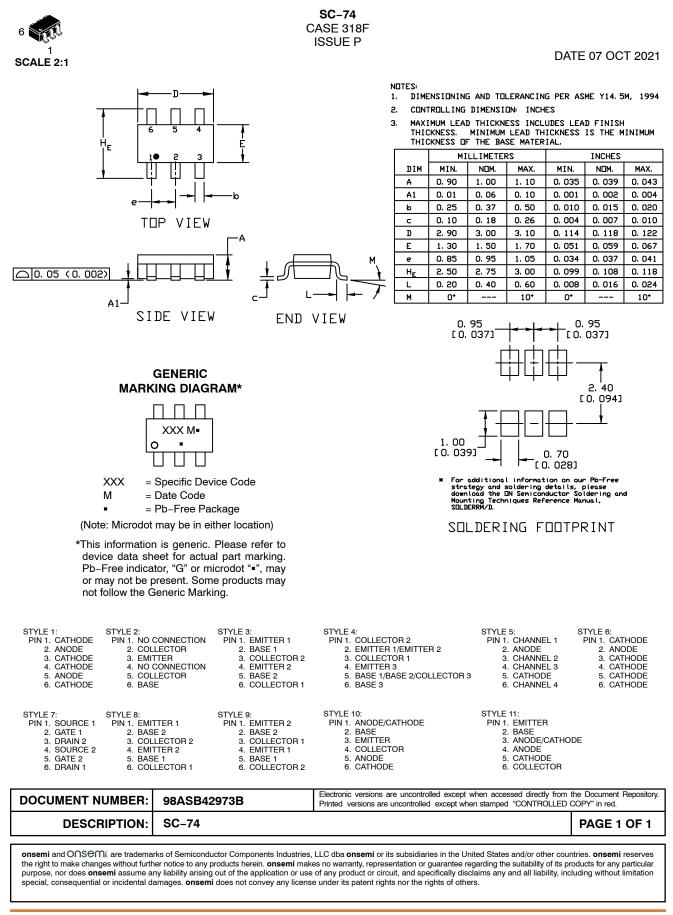

TYPICAL ELECTRICAL CHARACTERISTICS – NPN TRANSISTOR





NSM6056MT1G




rigare o. ourrent-dant-Banawiath roddot

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>