NSI45090DDT4G

Adjustable Constant Current Regulator & LED Driver

45 V, 90 – 160 mA ± 15%, 2.7 W Package

The adjustable constant current regulator (CCR) is a simple, economical and robust device designed to provide a cost effective solution for regulating current in LEDs. The CCR is based on patent-pending Self-Biased Transistor (SBT) technology and regulates current over a wide voltage range. It is designed with a negative temperature coefficient to protect LEDs from thermal runaway at extreme voltages and currents.

The CCR turns on immediately and is at 20% of regulation with only 0.5 V Vak. The R_adj pin allows I_reg(SS) to be adjusted to higher currents by attaching a resistor between R_adj (Pin 3) and the Cathode (Pin 4). The R_adj pin can also be left open (No Connect) if no adjustment is required. It requires no external components allowing it to be designed as a high or low-side regulator. The high anode-cathode voltage rating withstands surges common in Automotive, Industrial and Commercial Signage applications. This device is available in a thermally robust package, which is lead-free RoHS compliant and uses halogen-free molding compound. For the AEC-Q101 part please see the NSI45090JD datasheet.

Features
• Robust Power Package: 2.7 Watts
• Adjustable up to 160 mA
• Wide Operating Voltage Range
• Immediate Turn-On
• Voltage Surge Suppressing – Protecting LEDs
• SBT (Self-Biased Transistor) Technology
• Negative Temperature Coefficient
• Eliminates Additional Regulation
• These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications
• Automobile: Chevron Side Mirror Markers, Cluster, Display & Instrument Backlighting, CHMSL, Map Light
• AC Lighting Panels, Display Signage, Decorative Lighting, Channel Lettering
• Switch Contact Wetting
• Application Note AND8391/D – Power Dissipation Considerations
• Application Note AND8349/D – Automotive CHMSL

ON Semiconductor®

http://onsemi.com

I_reg(SS) = 90 – 160 mA
@ Vak = 7.5 V

Anode

1

3

R_adj

4

Cathode

4

DPACK
CASE 369C

MARKING DIAGRAM

A

1

R_adj

Y

WW

NSI

90DG

C

1 = Year
WW = Work Week
NSI90D = Specific Device Code
G = Pb-Free Package

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSI45090DDT4G</td>
<td>DPAK (Pb-Free)</td>
<td>2500/Tape & Reel</td>
</tr>
</tbody>
</table>

¹For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode–Cathode Voltage</td>
<td>Vak Max</td>
<td>45</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>VR</td>
<td>500</td>
<td>mV</td>
</tr>
<tr>
<td>Operating and Storage Junction Temperature Range</td>
<td>Tj, Tstg</td>
<td>−55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

ESD Rating:
- Human Body Model
- Machine Model
- ESD Class 3A
- Class B

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady State Current @ Vak = 7.5 V (Note 1)</td>
<td>Ireg(SS)</td>
<td>76.5</td>
<td>90</td>
<td>103.5</td>
<td>mA</td>
</tr>
<tr>
<td>Voltage Overhead (Note 2)</td>
<td>Voverhead</td>
<td>1.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Pulse Current @ Vak = 7.5 V (Note 3)</td>
<td>Ireg(P)</td>
<td>86.2</td>
<td>103</td>
<td>119.6</td>
<td>mA</td>
</tr>
<tr>
<td>Capacitance @ Vak = 7.5 V (Note 4)</td>
<td>C</td>
<td>17</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Capacitance @ Vak = 0 V (Note 4)</td>
<td>C</td>
<td>70</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

1. Ireg(SS) steady state is the voltage (Vak) applied for a time duration ≥ 80 sec, using FR−4 @ 300 mm², 2 oz. Copper traces, in still air.
2. Voverhead = Vin − VLEDs. Voverhead is typical value for 65% Ireg(SS).
3. Ireg(P) non-repetitive pulse test. Pulse width t ≤ 300 μsec.
4. f = 1 MHz, 0.02 V RMS.

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Device Dissipation (Note 5) T A = 25°C Derate above 25°C</td>
<td>PD</td>
<td>1771</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.16</td>
<td>mW/°C</td>
</tr>
<tr>
<td>Thermal Resistance, Junction—Ambient (Note 5)</td>
<td>RθJA</td>
<td>70.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Reference, Junction—Lead 4 (Note 5)</td>
<td>RψJA,L4</td>
<td>6.8</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

1. The T A = 25°C Derate above 25°C values are based upon empirical measurements and method of attachment.

Lead temperature measurement by attaching a T/C may yield values as high as 30% higher °C/W values based upon empirical measurements and method of attachment.

5. FR−4 @ 300 mm², 1 oz. copper traces, still air.
6. FR−4 @ 300 mm², 2 oz. copper traces, still air.
7. FR−4 @ 500 mm², 1 oz. copper traces, still air.
8. FR−4 @ 500 mm², 2 oz. copper traces, still air.
9. FR−4 @ 700 mm², 1 oz. copper traces, still air.
10. FR−4 @ 700 mm², 2 oz. copper traces, still air.

http://onsemi.com
TYPICAL PERFORMANCE CURVES
Minimum FR-4 @ 300 mm², 2 oz Copper Trace, Still Air

Figure 1. General Performance Curve for CCR

Figure 2. Steady State Current ($I_{\text{reg}(SS)}$) vs. Anode–Cathode Voltage (Vak)

Figure 3. Pulse Current ($I_{\text{reg}(P)}$) vs. Anode–Cathode Voltage (Vak)

Figure 4. Steady State Current vs. Pulse Current Testing

Figure 5. Current Regulation vs. Time

Figure 6. $I_{\text{reg}(SS)}$ vs. R_{adj}
APPLICATIONS

Number of LED’s that can be connected is determined by:
D1 is a reverse battery protection diode
LED’s = ((Vin − Qx VF − D1 VF)/LED VF)
Example: Vin = 12 Vdc, Qx VF = 3.5 Vdc, D1 VF = 0.7 V
LED VF = 2.2 Vdc @ 30 mA
(12 Vdc − 4.2 Vdc)/2.2 Vdc = 3 LEDs in series.

Number of LED’s that can be connected is determined by:
D1 is a reverse battery protection diode
Example: Vin = 12 Vdc, Qx VF = 3.5 Vdc, D1 VF = 0.7 V
LED VF = 2.6 Vdc @ 90 mA
(12 Vdc − (3.5 + 0.7 Vdc))/2.6 Vdc = 3 LEDs in series.
Number of Drivers = LED current/30 mA
90 mA/30 mA = 3 Drivers (Q1, Q2, Q3)
Comparison of LED Circuit using CCR vs. Resistor Biasing

<table>
<thead>
<tr>
<th>ON Semiconductor CCR Design</th>
<th>Resistor Biased Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant brightness over full Supply Voltage (more efficient), see Figure 10</td>
<td>Large variations in brightness over full Automotive Supply Voltage</td>
</tr>
<tr>
<td>Little variation of power in LEDs, see Figure 11</td>
<td>Large variations of current (power) in LEDs</td>
</tr>
<tr>
<td>Constant current extends LED strings lifetime, see Figure 10</td>
<td>High Supply Voltage/ Higher Current in LED strings limits lifetime</td>
</tr>
<tr>
<td>Current decreases as voltage increases, see Figure 10</td>
<td>Current increases as voltage increases</td>
</tr>
<tr>
<td>Current supplied to LED string decreases as temperature increases (self-limiting), see Figure 2</td>
<td>LED current decreases as temperature increases</td>
</tr>
<tr>
<td>Single resistor is used for current select</td>
<td>Requires costly inventory (need for several resistor values to match LED intensity)</td>
</tr>
<tr>
<td>Fewer components, less board space required</td>
<td>More components, more board space required</td>
</tr>
<tr>
<td>Surface mount component</td>
<td>Through-hole components</td>
</tr>
</tbody>
</table>

![Representative Test Data for Figure 8 Circuit, Current of LEDs, FR−4 @ 300 mm², 2 oz Copper Area](#)

![Representative Test Data for Figure 8 Circuit, Pd of LEDs, FR−4 @ 300 mm², 2 oz Copper Area](#)

Figure 10. Series Circuit Current

Figure 11. LED Power

Current Regulation: Pulse Mode ($I_{\text{reg}(P)}$) vs DC Steady-State ($I_{\text{reg}(SS)}$)

There are two methods to measure current regulation: Pulse mode ($I_{\text{reg}(P)}$) testing is applicable for factory and incoming inspection of a CCR where test times are a minimum. ($t < 300 \mu s$). DC Steady-State ($I_{\text{reg}(SS)}$) testing is applicable for application verification where the CCR will be operational for seconds, minutes, or even hours. ON Semiconductor has correlated the difference in $I_{\text{reg}(P)}$ to $I_{\text{reg}(SS)}$ for stated board material, size, copper area and copper thickness. $I_{\text{reg}(P)}$ will always be greater than $I_{\text{reg}(SS)}$ due to the die temperature rising during $I_{\text{reg}(SS)}$. This heating effect can be minimized during circuit design with the correct selection of board material, metal trace size and weight, for the operating current, voltage, board operating temperature (T_A) and package. (Refer to Thermal Characteristics table).
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)

CASE 369C

ISSUE G

DATE 31 MAY 2023

NOTES:
2. CONTROLLING DIMENSION: INCHES
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, l3, and Z.
4. DIMENSIONS B AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR BURRS SHALL NOT EXCEED 0.020 INCHES PER SIDE.
5. DIMENSIONS B AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
7. OPTIMAL MOLD FEATURE.

SCALE 1:1

TOP VIEW

SIDE VIEW

BOTTOM VIEW

BOTTOM VIEW

ALTERNATE CONSTRUCTIONS

DETAIL A

ROTATED 90° CW

GENERAL MARKING DIAGRAM*

MYXG

ALYWW

AYWW

XXX

XXXXXG

IC

Discrete

XXXXXX = Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.
Pb-Free indicator, “G” or microdot “−”, may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED MOUNTING FOOTPRINT*

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGIES AND MOUNTING TECHNIQUES, PLEASE REFER TO THE ON SEMICONDUCTOR MOUNTING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SILICON QFN.

STYLE 1:
1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 2:
1. GATE
2. DRAIN
3. SOURCE
4. DRAIN

STYLE 3:
1. ANODE
2. CATHODE
3. ANODE
4. CATHODE

STYLE 4:
1. CATHODE
2. ANODE
3. GATE
4. CATHODE

STYLE 5:
1. GATE
2. ANODE
3. CATHODE
4. ANODE

STYLE 6:
1. MT1
2. COLLECTOR
3. GATE
4. COLLECTOR

STYLE 7:
1. N/C
2. COLLECTOR
3. ANODE
4. COLLECTOR

STYLE 8:
1. ANODE
2. CATHODE
3. RESISTOR ADJUST
4. CATHODE

STYLE 9:
1. CATHODE
2. ANODE
3. CATHODE
4. ANODE

STYLE 10:
1. CATHODE
2. ANODE
3. CATHODE
4. ANODE

DOCUMENT NUMBER: 98AON10527D

Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION: DPAK (SINGLE GAUGE)

onsemi and ON Semiconductor are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2018