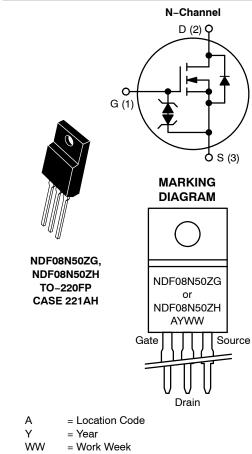
N-Channel Power MOSFET 500 V, 0.85 Ω

Features


- Low ON Resistance
- Low Gate Charge
- ESD Diode-Protected Gate
- 100% Avalanche Tested
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

V _{DSS}	R _{DS(ON)} (MAX) @ 3.6 A
500 V	0.85 Ω

G, H = Pb-Free, Halogen-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NDF08N50ZG	TO-220FP (Pb-Free, Halogen-Free)	50 Units / Rail
NDF08N50ZH	TO-220FP (Pb-Free, Halogen-Free)	50 Units / Rail

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	NDF08N50Z	Unit
Drain-to-Source Voltage	V _{DSS}	500	V
Continuous Drain Current $R_{\theta JC}$ (Note 1)	Ι _D	8.5	А
Continuous Drain Current $R_{\theta JC}$ T _A = 100°C (Note 1)	۱ _D	5.4	A
Pulsed Drain Current, V _{GS} @ 10 V	I _{DM}	34	A
Power Dissipation	PD	35	W
Gate-to-Source Voltage	V _{GS}	±30	V
Single Pulse Avalanche Energy, $I_D = 7.5 \text{ A}$	E _{AS}	190	mJ
ESD (HBM) (JESD 22–A114)	V _{esd}	3500	V
$\label{eq:RMS} \begin{array}{l} \text{RMS Isolation Voltage} \\ (t=0.3 \; \text{sec.}, \; \text{R.H.} \leq 30\%, \\ T_{\text{A}} = 25^{\circ}\text{C}) \; (\text{Figure 14}) \end{array}$	V _{ISO}	4500	V
Peak Diode Recovery (Note 2)	dV/dt	4.5	V/ns
MOSFET dV/dt	dV/dt	60	V/ns
Continuous Source Current (Body Diode)	I _S	7.5	A
Maximum Temperature for Soldering Leads	ΤL	260	°C
Operating Junction and Storage Temperature Range	T _J , T _{stg}	–55 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

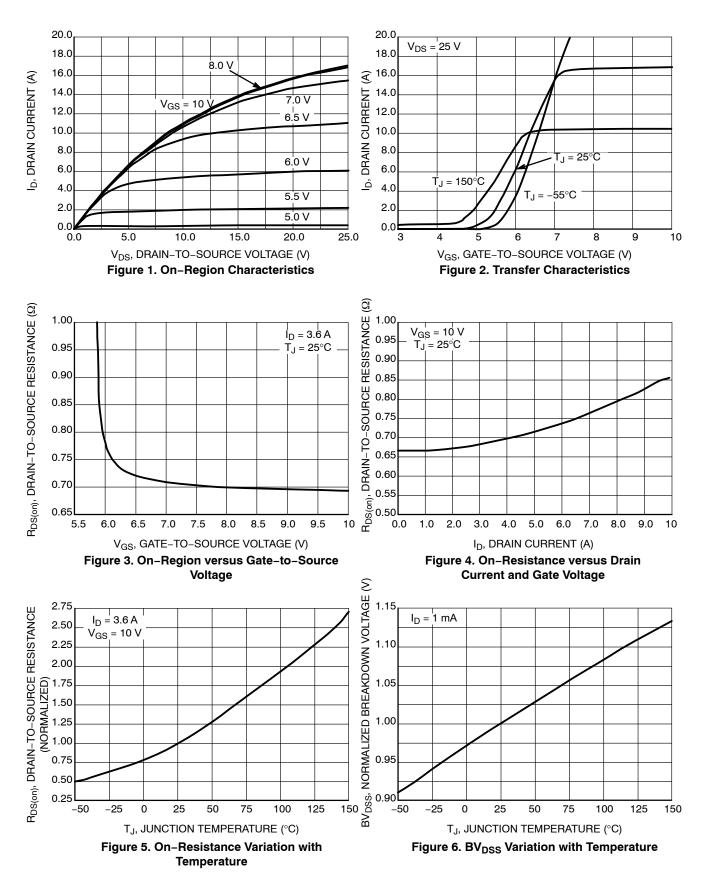
1. Limited by maximum junction temperature

2. I_{SD} = 7.5 Å, di/dt \leq 100 Å/ $\mu s,$ V_{DD} \leq $BV_{DSS},$ T_{J} = +150°C

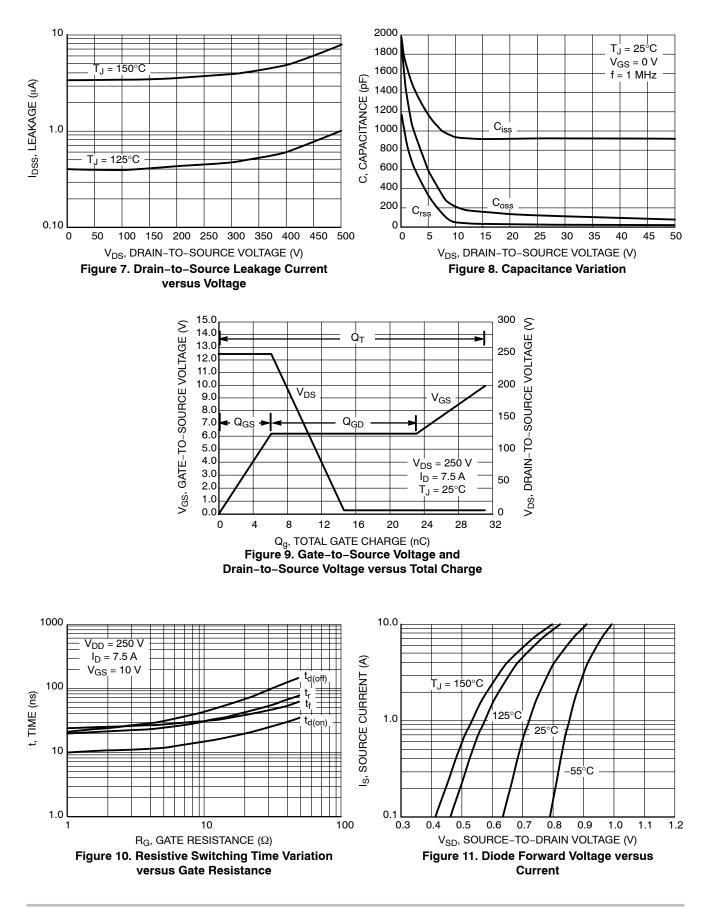
THERMAL RESISTANCE

Parameter	Symbol	NDF08N50Z	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	3.6	°C/W
Junction-to-Ambient Steady State (Note 3)	$R_{\theta JA}$	50	

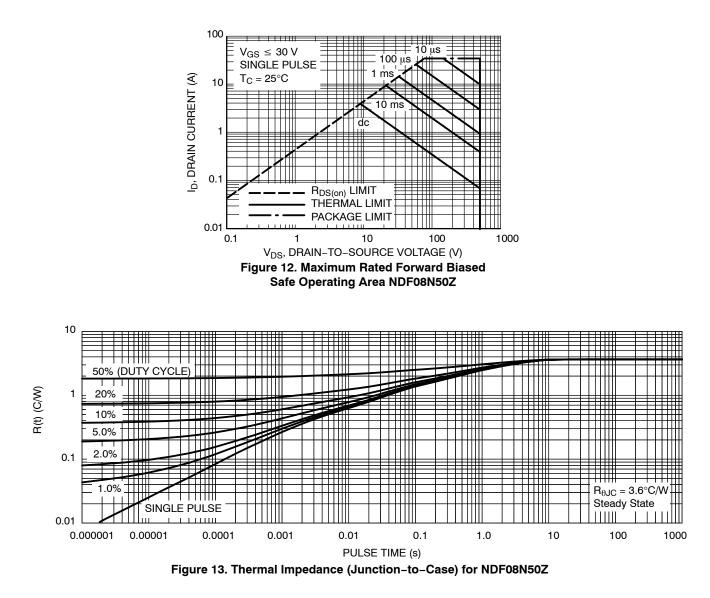
3. Insertion mounted

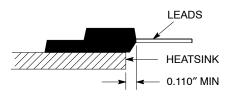

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic	Test Conditions		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			-		-	-	-
Drain-to-Source Breakdown Voltage	V_{GS} = 0 V, I _D = 1 mA		BV _{DSS}	500			V
Breakdown Voltage Temperature Co- efficient	Reference to 25°C, I _D = 1 mA		$\Delta BV_{DSS}/\Delta T_J$		0.6		V/°C
Drain-to-Source Leakage Current	V _{DS} = 500 V, V _{GS} = 0 V	25°C	I _{DSS}			1	μA
		150°C				50	1
Gate-to-Source Forward Leakage	V _{GS} = ±20 V		I _{GSS}			±10	μA
ON CHARACTERISTICS (Note 4)			•		-	•	
Static Drain-to-Source On-Resistance	V_{GS} = 10 V, I_{D} = 3.6 A		R _{DS(on)}		0.69	0.85	Ω
Gate Threshold Voltage	V_{DS} = V_{GS} , I_D = 100 μ A		V _{GS(th)}	3.0	3.9	4.5	V
Forward Transconductance	V _{DS} = 15 V, I _D = 3.75 A		9fs		6.0		S
DYNAMIC CHARACTERISTICS							-
Input Capacitance (Note 5)	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		C _{iss}	730	912	1095	pF
Output Capacitance (Note 5)			C _{oss}	95	120	140	
Reverse Transfer Capacitance (Note 5)			C _{rss}	15	27	35	
Total Gate Charge (Note 5)			Qg	16	31	46	nC
Gate-to-Source Charge (Note 5)			Q _{gs}	3	6.2	9	1
Gate-to-Drain ("Miller") Charge (Note 5)	V_{DD} = 250 V, I_D = 7.5 A, $V_{\rm GS}$ = 10 V		Q _{gd}	8	17	25	
Plateau Voltage					6.3		V
Gate Resistance			R _g		3.0		Ω
RESISTIVE SWITCHING CHARACTER	RISTICS						
Turn-On Delay Time			t _{d(on)}		13		ns
Rise Time	V_{DD} = 250 V, I_D = 7.5 A, V_{GS} = 10 V, R_G = 5 Ω		t _r		23		
Turn-Off Delay Time			t _{d(off)}		31		1
Fall Time			t _f		29		1
SOURCE-DRAIN DIODE CHARACTE	RISTICS (T _C = 25°C unless oth	nerwise no	ted)		•		
			,		1	1	


Diode Forward Voltage	$I_{\rm S}$ = 7.5 A, $V_{\rm GS}$ = 0 V	V _{SD}		1.6	V
Reverse Recovery Time	V _{GS} = 0 V, V _{DD} = 30 V	t _{rr}	295		ns
Reverse Recovery Charge	I _S = 7.5 A, di/dt = 100 A/μs	Q _{rr}	1.85		μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Pulse Width ≤ 380 µs, Duty Cycle ≤ 2%.
5. Guaranteed by design.


TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

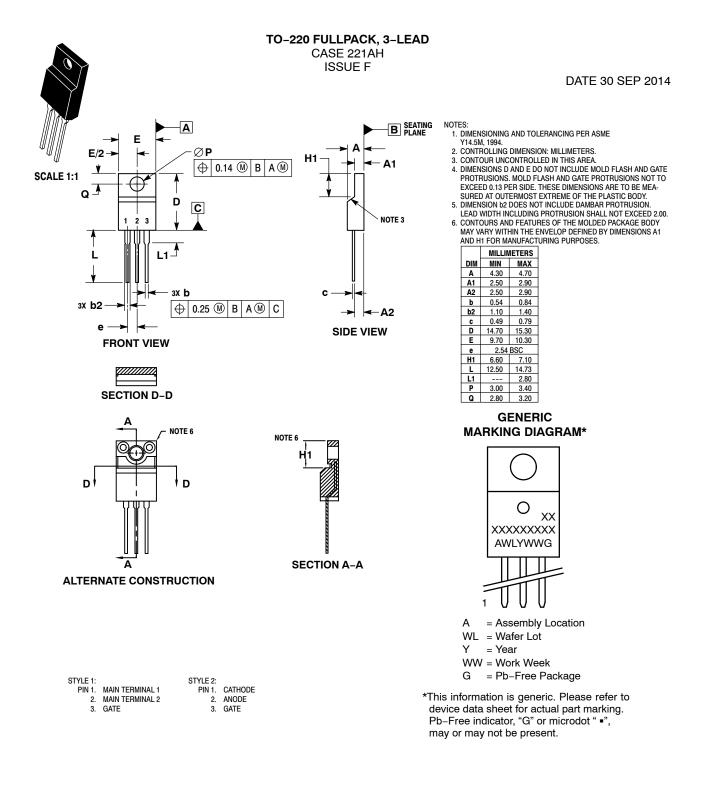


Figure 14. Isolation Test Diagram

Measurement made between leads and heatsink with all leads shorted together.

*For additional mounting information, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi

DOCUMENT NUMBER:	98AON52577E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TO-220 FULLPACK, 3-LEAD		PAGE 1 OF 1			
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves						

the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>