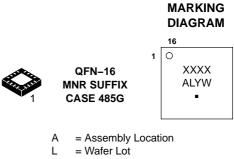
USB Single Channel Transceiver

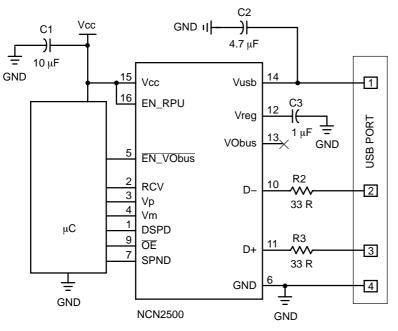
The NCN2500 Integrated Circuit is a single channel transceiver designed to accommodate the physical USB Port with a microcontroller digital I/O. The part is fully USB compliant and supports the full 12 Mbps speed. On the other hand, the NCN2500 device includes the pullup resistors as defined by the USB–ECN new specifications.

Features

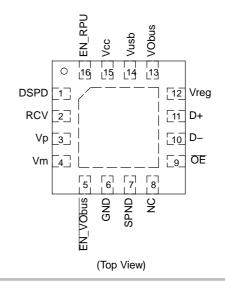
- Compliant to the USB Specification, Version 2.0, Low and Full Speed
- Very Small Footprint Due to the QFN-16 Package
- Integrated D+/D- Pullup Resistors
- Operates Over the Full 1.5 V to 3.6 V Supply
- Pb–Free Package is Available*


Typical Applications

- Portable Computer
- Cellular Phone


ON Semiconductor®

http://onsemi.com


Y = Year

- W = Work Week
- = Pb–Free Package

Figure 1. Typical Application

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping†
NCN2500MNR2	QFN-16	3000 Tape & Reel
NCN2500MNR2G	QFN-16 (Pb-Free)	3000 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

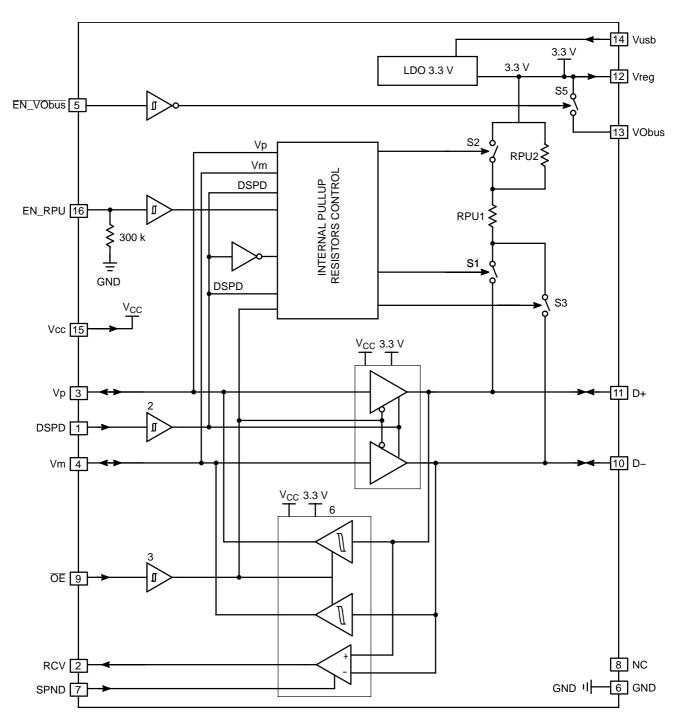


Figure 2. Block Diagram

PIN FUNCTION DESCRIPTION

Pin	Symbol	Function	Description
1	DSPD	INPUT	The DSPD logic level (Data Speed) activates the Low or the High speed operation on the USB port. DSPD = Low Low Speed, RPU1 and RPU2 connected to D– DSPD = High Full Speed, RPU1 and RPU2 connected to D+
2	RCV	OUTPUT	This pin interfaces the USB signals with the microcontroller digital line. The data present on the $D+/D-$ pins are translated onto this signal.
3	Vp	I/O	$ \begin{array}{l} \mbox{This pin, associated with Vm, is an I/O system interface signal depending upon the OE logic state: \\ \hline OE = Low & Vp is a Plus driver Input (from \mu C to USB bus) \\ \hline OE = High & Vp is a Plus receiver Output (from USB bus to \mu C) \\ \end{array} $
4	Vm	I/O	$ \begin{array}{l} \mbox{This pin, associated with Vp, is an I/O system interface signal depending upon the} \\ \hline \overline{OE} \mbox{ logic state:} \\ \hline \overline{OE} \mbox{ = Low } & \mbox{Vm is a Minus driver Input (from μC to USB bus)} \\ \hline \overline{OE} \mbox{ = High } & \mbox{Vm is a Minus receiver Output (from USB bus to μC)} \\ \end{array} $
5	EN_VObus	INPUT	Digital input to control the VObus voltage. EN_VObus = Low VObus connected to Vreg EN_VObus = High VObus disconnected from Vreg (Hi Z)
6	GND	PWR	This pin carries the digital and USB ground level. High Quality PCB design shall be observed to avoid uncontrolled voltage spikes.
7	SPND	INPUT	The SPND digital signal (SUSPEND) selects the operation mode to reduce the power supply current. SPND = Low Normal operation SPND = High Suspend mode, no activity takes place
8	NC	-	No Connection, shall be neither grounded, nor connected to Vcc or Vbus.
9	ŌĒ	INPUT	This pin activates the operating mode of the D-/D+ signals. \overline{OE} = Low logic levelData are transmitted onto the USB bus \overline{OE} = High logic levelData are received from the USB bus
10	D-	I/O	This pin is connected to the USB Minus Data line I/O. The data direction depends upon the $\overline{\text{OE}}$ logic state.
11	D+	I/O	This pin is connected to the USB Plus Data line I/O The data direction depends upon the $\overline{\text{OE}}$ logic state.
12	Vreg	PWR	This pin provides a 3.3 V regulated voltage to supply the internal USB blocks and the external termination bias resistor. An external circuit can be connected to this LDO, assuming the current does not extend the maximum rating (50 mA).
13	VObus	OUTPUT, PWR	This pin connects the Vreg voltage to the 1.5 k external pullup resistor. The VObus voltage is controlled by the logic states present Pin 5. The R _{DSon} of the internal PMOS device (reference S5 in the Block Diagram) is 10 Ω typical.
14	Vusb	PWR	This pin is connected to the USB port +Vcc supply voltage.
15	Vcc	PWR	This pin provides the interface power supply. The power source can be an external supply or can be derived from the USB + Vusb voltage.
16	EN_RPU	INPUT	This pin activates or deactivate the internal RPU1 and RPU2 pullup resistors: EN_RPU = H RPU1 and RPU2 activated EN_RPU = L RPU1 and RPU2 deactivated

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	6.0	V
Digital Input Pins	Vind	-0.5 V < Vin < Vcc + 0.5 V, but < 6.0 V	V
Digital Input Pins	Vid	-0.5 V < Vin < AGND + 0.5 V, but < 6.0 V	V
Digital Input Pins	Ibias	–35 mA < Ibias < 35 mA	mA
ESD Capability, HBM (Note 1) Vusb, D+, D–, GND Any Other Pins Machine Model, Any Pins	V _{ESD}	10 2.0 200	kV kV V
QFN–16 Package Power Dissipation @ Tamb = +85°C Thermal Resistance, Junction–to–Air (R _{θJA})	P _{DS} R _{θJA}	470 85	mW °C/W
Operating Ambient Temperature Range	T _A	-40 to +85	°C
Operating Junction Temperature Range	TJ	-40 to +125	°C
Maximum Junction Temperature (Note 2)	T _{Jmax}	+150	°C
Storage Temperature Range	T _{sg}	-65 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. Human Body Model, $R = 1500 \Omega$, C = 100 pF; Machine Model.

2. Absolute Maximum Rating beyond which damage(s) to the device may occur.

ELECTRICAL CHARACTERISTICS

Input EN_RPU Pulldown Resistor @VCC = 3.3 V

Characteristic	Symbol	Pin	Min	Тур	Max	Unit				
DIGITAL PARAMETERS SECTION @ 1.5 V < Vcc < 3.6 V (-40°C to +85°C ambient temperature, unless otherwise noted.) NOTE: Digital inputs undershoot < -0.3 V to ground, digital inputs overshoot < 0.3 V to Vcc.										
High Level Input Voltage DSPD, Vp, Vm, EN_VObus, SPND, OE, EN_RPU	V _{IH}	1, 3, 4, 5, 7, 9, 16	0.80*Vcc	-	-	V				
Low Level Input Voltage DSPD, Vp, Vm, <u>EN_VObus</u> , SPND, OE, EN_RPU	V _{IL}	1, 3, 4, 5, 7, 9, 16	-	-	0.20*Vcc	V				
High Level Output Voltage RCV, Vp, Vm @ I_{OH} = 1.0 mA	V _{OH}	2, 3, 4	0.80*Vcc	-	-	V				
Low Level Output Voltage RCV, Vp, Vm @ I_{OL} = 1.0 mA	V _{OL}	2, 3, 4	-	-	0.20*Vcc	V				
Input Leakage Current DSPD, Vp, Vm, EN_VObus, SPND, OE, EN_RPU	IIL	1, 3, 4, 5, 7, 9, 16	_	-	±5.0	μΑ				

RPU

300

kΩ

_

TRANSCEIVER SECTION @ 1.5 V < Vcc < 3.6 V (-40°C to +85°C ambient temperature, unless otherwise noted.)

Static Output High, D–, D+ @ \overline{OE} = Low, R _L = 15 k Ω to GND	V _{OH}	10, 11	2.8	-	3.6	V
Static Output Low, D–, D+ @ \overline{OE} = Low, R _L = 1.5 k Ω to Vreg	V _{OL}	10, 11	-	-	0.3	V
Single Input Receiver Threshold	V _{SE}	10, 11	0.8	-	2.0	V
Single Ended Receiver Hysteresis (Note 3)	-	-	_	200	-	mV
Differential Input Sensitivity $ D+ - D- @ 0.8 V < V_{CM} < 2.5 V (Note 3)$	V _{DI}	10, 11	0.2	-	-	V
Differential Common Mode Including the V_{DI}	V _{CM}	10, 11	0.8	-	2.5	V
Differential Receiver Hysteresis (Note 3)	-	10, 11	-	70	-	mV
D+ and D– Transceiver Hi–Z State Leakage Current @ $\overline{\text{OE}}$ = 1, 0 V < Vusb < 3.3 V	ILO	10, 11	_	-	±10	μΑ
Transceiver Input Capacitance (Note 3)	Cin	10, 11	-	-	20	pF
Transceiver Output Resistance (Note 3)	Z _{DRV}	10, 11	28	-	44	Ω
Transceiver Input Impedance (Note 3)	Z _{IN}	10, 11	10	-	-	MΩ
Internal RPU1 Pull Resistor	R _{RPU-1}	10, 12	900	-	1575	Ω
Internal RPU2 Pull Up Resistor	R _{RPU-2}	10, 12	525	-	1515	Ω
LOW SPEED DRIVER OPERATION (Note 3)						
Transition Rise Time @ $C_L = 50 \text{ pF}$ @ $C_L = 600 \text{ pF}$	tr	10, 11	75 75		300 300	ns
Transition Fall Time @ $C_L = 50 \text{ pF}$ @ $C_L = 600 \text{ pF}$	tf	10, 11	75 75		300 300	ns
Rise and Fall Time Matching	tr, tf	10, 11	80	-	125	%
Output Signal Crossover Voltage	V _{CRS}	10, 11	1.3	-	2.0	V
Data Transaction Rate	Drate	10, 11	-	-	1.5	Mbs

3. Parameter guaranteed by design, not production tested.

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Pin	Min	Тур	Max	Unit
FULL SPEED DRIVER OPERATION (Note 4)						
Transition Rise Time @ $C_L = 50 \text{ pF}$	tr	10, 11	4.0	-	20	ns
Transition Fall Time @ C _L = 50 pF	tf	10, 11	4.0	-	20	ns
Rise and Fall Time Matching	tr, tf	10, 11	90	-	110	%
Output Signal Crossover Voltage	V _{CRS}	10, 11	1.3	-	2.0	V
Data Transaction Rate	Drate	10, 11	-	-	12	Mbs
TRANSCEIVER TIMING (Note 4)						
OE to RCVR Hi–Z Delay (see Figure 3)	t _{PVZ}	9	-	-	15	ns
Receiver Hi–Z to Transmit Delay (see Figure 3)	t _{PZD}	-	15	-	-	ns
OE to DRVR Hi–Z Delay (see Figure 3)	t _{PDZ}	-	-	-	15	ns
Driver Hi–Z to Receiver Delay (see Figure 3)	t _{PZV}	-	15	-	-	ns
Vp/Vm to D+/D- Propagation Delay (see Figure 6)	t _{PLH}	3, 4, 10, 11	-	-	15	ns
Vp/Vm to D+/D- Propagation Delay (see Figure 6)	t _{PHL}	3, 4, 10, 11	_	-	15	ns
D+/D- to RCV Propagation Delay @ $1.5 < Vcc < 5.5 V$ (see Figure 5) C _L = 25 pF tr = tf = 3.0 ns	t _{PLH}	11, 10, 2	-	-	15	ns
D+/D- to RCV Propagation Delay @ $1.5 < Vcc < 5.5 V$ (see Figure 5) C _L = 25 pF tr = tf = 3.0 ns	t _{PHL}	11, 10, 2	-	-	15	ns
D+/D– to Vp/D– Propagation Delay @ $1.5 < Vcc < 5.5 V$ (see Figure 5) C _L = 25 pF tr = tf = 3.0 ns	t _{PLH}	11, 10, 3	-	-	8.0	ns
D+/D- to Vm/D- Propagation Delay @ $1.5 < Vcc < 5.5 V$ (see Figure 5) C _L = 25 pF tr = tf = 3.0 ns	t _{PHL}	11, 10, 4	-	-	8.0	ns
POWER SUPPLY SECTION @ 1.5 V < Vcc < 3.6 V (-40°C	to +85°C am	bient temperatu	re, unless oth	erwise noted.)	
Digital Supply Voltage	Vcc	15	1.5	-	3.6	V
USB Port Input Supply Voltage	Vusb	14	4.0	-	5.25	V
Output Regulated Voltage @ 4.0 V < Vusb < 5.25 V, Cin = 4.7 μ F, Cout = 1.0 μ F, Ireg = 100 mA	Vreg	12	3.0	3.3	3.6	V
Output Switched Voltage @ Io = 1.0 mA, Cin = $4.7 \mu\text{F}$	Vobus	13	3.0	3.3	3.6	V
Line Regulation Output Voltage	Vreg	12	-	0.1	-	%
Standby Current @ Vusb = 5.25 V, \overline{OE} = H, SPND = H, D+ and D- are Idle, Vcc = 3.6 V	I _{VCC}	14	-	1.0	_	μΑ
Standby Current @ Vusb = 5.25 V, \overline{OE} = H, SPND = L, D+ and D- are Idle, Vcc = 3.6 V	IVCC	14	-	1.0	-	μΑ
Operating Current \overline{OE} = L, D– and D+ Active, SPND = L (Note 4), Transmitter Mode @ F = 6.0 MHz, C _L = 50 pF @ F = 750 kHz, C _L = 600 pF	Ivcc	14	-	300 40		μΑ
Operating Current $\overline{OE} = H$, D- and D+ Active, SPND = L (Note 4), Receiver Mode @ F = 6.0 MHz, C _L = 25 pF @ F = 750 kHz, C _L = 25 pF	Ivcc	14	-	1.5 250	-	mA μA

4. Parameter guaranteed by design, not production tested.

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Pin	Min	Тур	Max	Unit			
POWER SUPPLY SECTION @ 1.5 V < Vcc < 3.6 V (continued) (-40°C to +85°C ambient temperature, unless otherwise noted.)									
USB Supply Current @ D- and D+ are Idle, Vusb = 5.25 V and: @ SPND = 1, \overline{OE} = 1, DSPD = 0, EN_RPU = 0 @ SPND = 0, \overline{OE} = 1, DSPD = 1, EN_RPU = 0 @ SPND = 0, \overline{OE} = 0, DSPD = 0, EN_RPU = 0 @ SPND = 1, \overline{OE} = 1, DSPD = 0, EN_RPU = 1	I _{BUS}	14		120 1.7 1.7 320	200 - - 500	μA mA mA μA			
@ D- and D+ are Active, $C_L = 50 \text{ pF}$, Vusb = 5.25 V, SPND = 0, $\overline{OE} = 0$, DSPD = 1, F = 6.0 MHz (Note 5) @ EN_RPU = Low @ EN_RPU = High @ D- and D+ are Active (Note 5) Vusb = 5.25 V, SPND = 0, $\overline{OE} = 0$, DSPD = 1, F = 750 kHz, $C_L = 600 \text{ pF}$ F = 750 kHz, $C_L = 300 \text{ pF}$				8.3 9.4 5.4 3.9	- - -	mA mA mA mA			

5. Parameter guaranteed by design, not production tested.

EN_RPU	DSPD	S1	S2	S3	Data Line	USB	Note
0	Х	Х	Х	Х	Х	Х	Internal RPU Deactivated, S1 and S3 are Forced OPEN
1	1	Open	Х	Open	Vbus Off	Х	Internal RPU disabled
1	1	Close	Close	Open	Idle	Full Speed	Internal RPU Activated
1	1	Closed	Open	Open	Receiving	Full Speed	Internal RPU Activated
1	0	Open	Х	Open	Vbus Off	х	Internal RPU disabled
1	0	Open	Close	Close	Idle	Low Speed	Internal RPU Activated
1	0	Open	Open	Close	Receiving	Low Speed	Internal RPU Activated

Table 1. Internal RPU1 and RPU2 Pullup Resistors Control

6. See Figure 8 and Figure 9.

Table 2. Transmit Mode Interface Control ($\overline{OE} = 0 \rightarrow$ Transmit Mode)

SPND	Vp	Vm	D+	D-	RCV	STATE
0	0	0	0	0	Х	SE0
0	0	1	0	1	0	Low
0	1	0	1	0	1	High
0	1	1	1	1	Х	Undefined
1	0	0	0	0	0	Suspend
1	0	1	0	1	0	Suspend
1	1	0	1	0	0	Suspend
1	1	1	1	1	0	Suspend

Table 3. Receive Mode Interface Control ($\overline{OE} = 1 \rightarrow \text{Receive Mode}$)

SPND	D+	D-	Vp	Vm	RCV	STATE
0	0	0	0	0	Х	SE0
0	0	1	0	1	0	Low
0	1	0	1	0	1	High
0	1	1	1	1	Х	Undefined
1	0	0	0	0	0	Suspend
1	0	1	0	1	0	Suspend
1	1	0	1	0	0	Suspend
1	1	1	1	1	0	Suspend

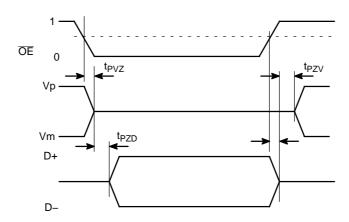


Figure 3. Enable and Disable USB Times

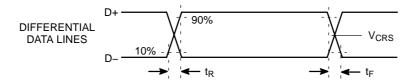


Figure 4. USB Line Rise and Fall Times

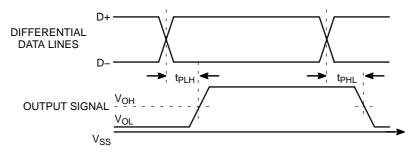


Figure 5. Receiver Propagation Delays

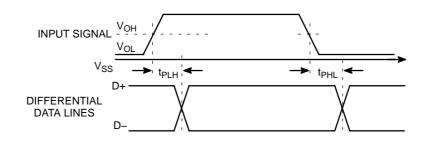
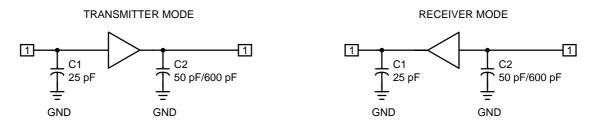
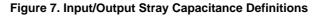
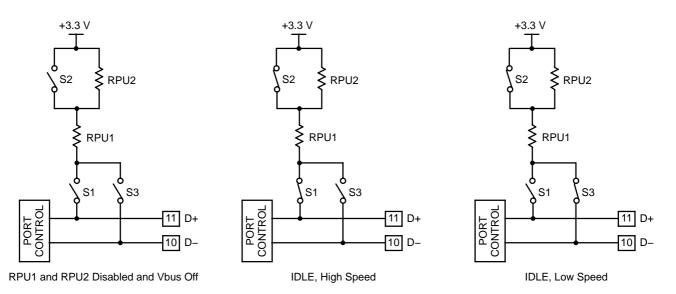
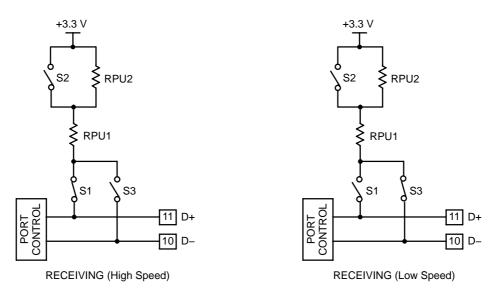
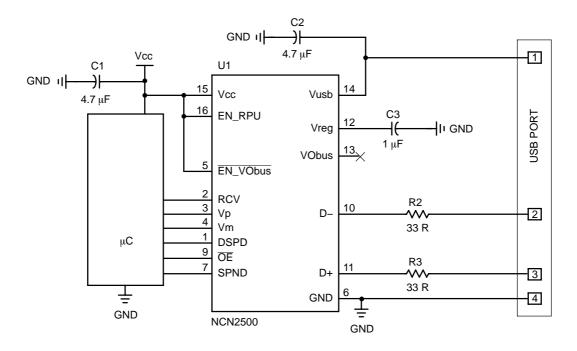




Figure 6. Driver Propagation Delays


Figure 8. Internal RPU1 and RPU2 Pullup Resistors Operation, IDLE Mode

NOTE: Internal Pullup Resistor Range: RPU1: 900 Ω min–1575 Ω max, RPU2: 525 Ω min–1515 Ω max

Figure 9. Internal RPU1 and RPU2 Pullup Resistors Activated, RECEIVING Mode

TYPICAL APPLICATIONS

In this application, the two internal pullup resistors (RPU1 and RPU2) are used to bias the USB line. Consequently, the VObus voltage is deactivated (Pin 5 connected to Vcc).

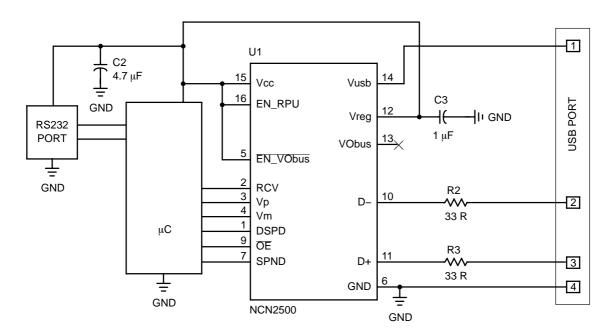
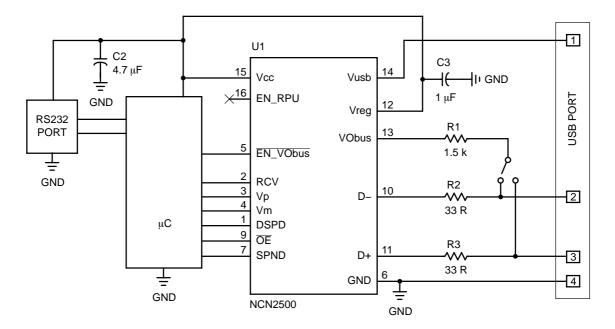
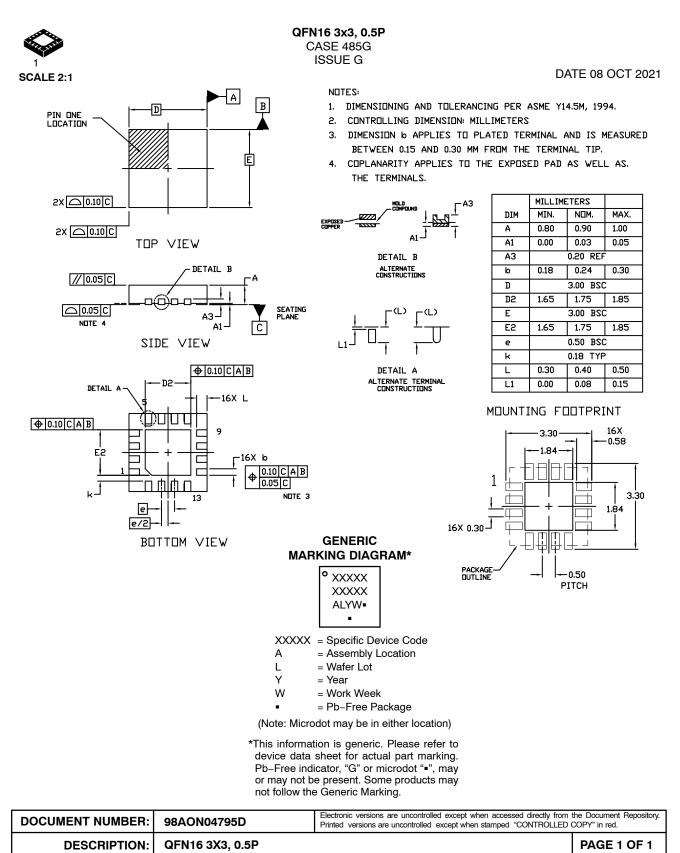



Figure 11. Peripheral are Powered by the Vreg Supply


TYPICAL APPLICATIONS

Note: Pin 16 can be left open, due to the internal pull-down resistor, or connected to ground.

Figure 12. Using External Pullup Resistors

onsemi

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>