ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Preferred Device

VHF/UHF Transistor

NPN Silicon

Features

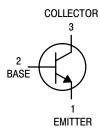
• Pb-Free Package is Available

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	25	Vdc
Collector-Base Voltage	V _{CBO}	30	Vdc
Emitter-Base Voltage	V _{EBO}	3.0	Vdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board T _A = 25°C Derate above 25°C	P _D (Note 1)	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate, T _A = 25°C Derate above 25°C	P _D (Note 2)	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	625	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C


Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- 1. $FR-5 = 1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = 0.4 X 0.3 X 0.024 in. 99.5% alumina

ON Semiconductor®

http://onsemi.com

SC-59 CASE 318D STYLE 1

MARKING DIAGRAM

14A = Specific Device Code

M = Date Code*

=Pb-Free Package

(Note: Microdot may be in either location)

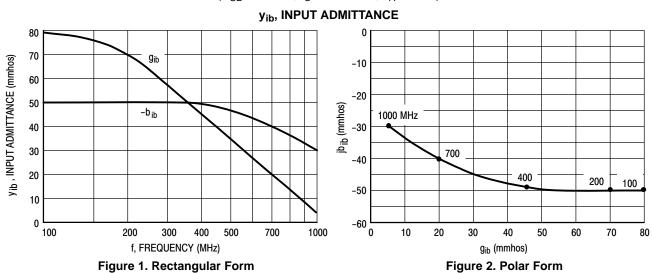
*Date Code orientation may vary depending upon manufacturing location

ORDERING INFORMATION

	Device	Package	Shipping [†]
N	/ISD2714AT1	SC-59	3000 / Tape & Reel
N	//SD2714AT1G	SC-59 (Pb-Free)	3000 / Tape & Reel

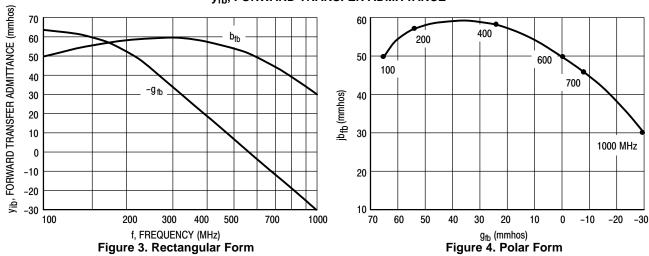
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V _{(BR)CEO}	25	-	-	Vdc
Collector – Base Breakdown Voltage $(I_C = 10 \mu Adc, I_E = 0)$	V _{(BR)CBO}	30	-	-	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	3.0	-	-	Vdc
Collector Cutoff Current (V _{CB} = 35 Vdc, I _E = 0)	I _{CBO}	_	-	500	nAdc
Emitter Cutoff Current (V _{EB} = 3.5 Vdc, I _C = 0)	I _{EBO}	_	_	500	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 6.0 Vdc)	h _{FE}	90	_	180	_
Base – Emitter On Voltage ($I_C = 4.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$)	V _{BE}	_	_	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current–Gain – Bandwidth Product ($I_C = 4.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	f _T	650	-	-	MHz
Collector–Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	-	0.7	pF
Common–Base Feedback Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{rb}	_	-	0.65	pF
Collector Base Time Constant (I _C = 4.0 mAdc, V _{CB} = 10 Vdc, f = 31.8 MHz)	rb′C _c	_	-	9.0	ps

TYPICAL CHARACTERISTICS


COMMON-BASE y PARAMETERS versus FREQUENCY

 $(V_{CB} = 10 \text{ Vdc}, I_C = 4.0 \text{ mAdc}, T_A = 25^{\circ}\text{C})$

TYPICAL CHARACTERISTICS

y_{fb}, FORWARD TRANSFER ADMITTANCE

COMMON-BASE y PARAMETERS versus FREQUENCY

 $(V_{CB} = 10 \text{ Vdc}, I_C = 4.0 \text{ mAdc}, T_A = 25^{\circ}\text{C})$

y_{rb}, REVERSE TRANSFER ADMITTANCE

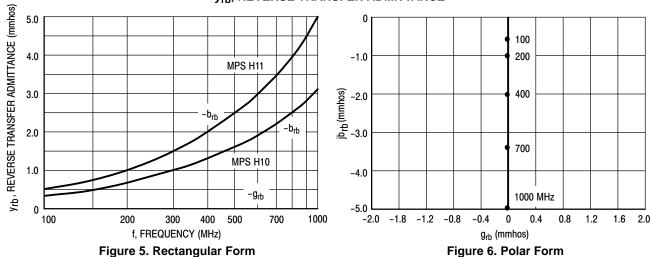
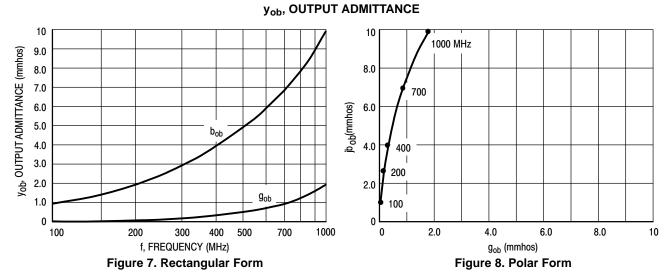
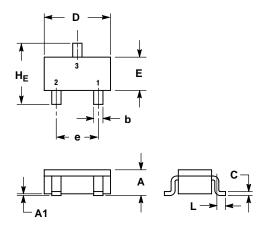
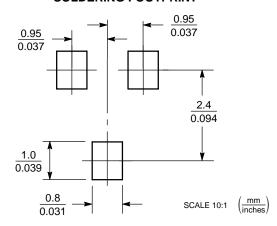




Figure 5. Rectangular Form

PACKAGE DIMENSIONS

SC-59 CASE 318D-04 **ISSUE G**

DIMENSIONING AND TOLERANCING PER ANSI


Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.00	1.15	1.30	0.039	0.045	0.051
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.35	0.43	0.50	0.014	0.017	0.020
С	0.09	0.14	0.18	0.003	0.005	0.007
D	2.70	2.90	3.10	0.106	0.114	0.122
Е	1.30	1.50	1.70	0.051	0.059	0.067
a	1.70	1.90	2.10	0.067	0.075	0.083
L	0.20	0.40	0.60	0.008	0.016	0.024
HE	2.50	2.80	3.00	0.099	0.110	0.118

STYLE 1: PIN 1. EMITTER

2. BASE 3. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative