MOC3051M, MOC3052M, MOC3053M

6-Pin DIP Random-Phase Triac Driver Optocoupler (600 Volt Peak)

The MOC3051M, MOC3052M and MOC3053M consist of a GaAs infrared emitting diode optically coupled to a non–zero–crossing silicon bilateral AC switch (triac). These devices isolate low voltage logic from 115 VAC and 240 VAC lines to provide random phase control of high current triacs or thyristors. These devices feature greatly enhanced static dv/dt capability to ensure stable switching performance of inductive loads.

Features
• Excellent I_F Stability—IR Emitting Diode Has Low Degradation
• 600 V Peak Blocking Voltage
• Safety and Regulatory Approvals
 ♦ UL1577, 4,170 VAC_RMS for 1 Minute
 ♦ DIN EN/IEC60747–5–5

Typical Applications
• Solenoid/Valve Controls
• Lamp Ballasts
• Static AC Power Switch
• Interfacing Microprocessors to 115 VAC and 240 VAC Peripherals
• Solid State Relay
• Incandescent Lamp Dimmers
• Temperature Controls
• Motor Controls

MARKING DIAGRAM

ON = ON Semiconductor Logo
MOC3051 = Device Code
V = DIN EN/IEC60747–5–5 Option
X = One–Digit Year Code
YY = Two–Digit Work Week,
Q = Assembly Package Code

PIN CONNECTIONS

ORDERING INFORMATION
See detailed ordering, marking and shipping information on page 9 of this data sheet.
SAFETY AND INSULATIONS RATINGS

As per DIN EN/IEC 60747–5–5, this optocoupler is suitable for “safe electrical insulation” only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 150 VRMS</td>
<td>I–IV</td>
</tr>
<tr>
<td>< 300 VRMS</td>
<td>I–IV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Climatic Classification</th>
<th>40/85/21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollution Degree (DIN VDE 0110/1.89)</td>
<td>2</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>175</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPR</td>
<td>Input–Output Test Voltage, Method A, (V_{\text{ORM}} \times 1.6 = V_{\text{PR}}), Type and Sample Test with (t_m = 10) s, Partial Discharge < 5 pC</td>
<td>1360</td>
<td>Vpeak</td>
</tr>
<tr>
<td></td>
<td>Input–Output Test Voltage, Method B, (V_{\text{ORM}} \times 1.875 = V_{\text{PR}}), 100% Production Test with (t_m = 1) s, Partial Discharge < 5 pC</td>
<td>1594</td>
<td>Vpeak</td>
</tr>
<tr>
<td>VORM</td>
<td>Maximum Working Insulation Voltage</td>
<td>850</td>
<td>Vpeak</td>
</tr>
<tr>
<td>VOTM</td>
<td>Highest Allowable Over-Voltage</td>
<td>6000</td>
<td>Vpeak</td>
</tr>
<tr>
<td></td>
<td>External Creepage</td>
<td>(\geq 7)</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>External Clearance</td>
<td>(\geq 7)</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>External Clearance (for Option TV, 0.4” Lead Spacing)</td>
<td>(\geq 10)</td>
<td>mm</td>
</tr>
<tr>
<td>DTI</td>
<td>Distance Through Insulation (Insulation Thickness)</td>
<td>(\geq 0.5)</td>
<td>mm</td>
</tr>
<tr>
<td>RID</td>
<td>Insulation Resistance at (T_S), (V_{\text{ID}} = 500) V</td>
<td>(> 10^9)</td>
<td>Ω</td>
</tr>
</tbody>
</table>
MAXIMUM RATINGS

$T_A = 25^\circ \text{C}$ unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature</td>
<td>-40 to $+150$</td>
<td>°C</td>
</tr>
<tr>
<td>T_{OPR}</td>
<td>Operating Temperature</td>
<td>-40 to $+85$</td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Junction Temperature Range</td>
<td>-40 to $+100$</td>
<td>°C</td>
</tr>
<tr>
<td>T_{SOL}</td>
<td>Lead Solder Temperature</td>
<td>260 for 10 seconds</td>
<td>°C</td>
</tr>
<tr>
<td>P_D</td>
<td>Total Device Power Dissipation at 25°C Ambient</td>
<td>330</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>Derate Above 25°C</td>
<td>4.4</td>
<td>mW/°C</td>
</tr>
</tbody>
</table>

Emitter

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_F</td>
<td>Continuous Forward Current</td>
<td>60</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_R</td>
<td>Reverse Voltage</td>
<td>3</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_D</td>
<td>Total Power Dissipation at 25°C Ambient</td>
<td>100</td>
<td>mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Derate Above 25°C</td>
<td>1.33</td>
<td>mW/°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Detector

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DRM}</td>
<td>Off–State Output Terminal Voltage</td>
<td>600</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{TM}</td>
<td>Peak Non–Repetitive Surge Current (Single Cycle 60 Hz Sine Wave)</td>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_D</td>
<td>Total Power Dissipation at 25°C Ambient</td>
<td>300</td>
<td>mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Derate Above 25°C</td>
<td>4</td>
<td>mW/°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS

$T_A = 25^\circ \text{C}$ unless otherwise specified

INDIVIDUAL COMPONENT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>Input Forward Voltage</td>
<td>$I_F = 10$ mA</td>
<td>1.18</td>
<td>1.50</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_R</td>
<td>Reverse Leakage Current</td>
<td>$V_R = 3$ V</td>
<td>0.05</td>
<td>100</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

Transfer Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>DC Characteristic</th>
<th>Test Conditions</th>
<th>Device</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{FT}</td>
<td>LED Trigger Current, Either Direction</td>
<td>Main Terminal Voltage = 3 V (Note 2)</td>
<td>MOC3051M</td>
<td>15</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_H</td>
<td>Holding Current, Either Direction</td>
<td>All</td>
<td>MOC3052M</td>
<td>10</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MOC3053M</td>
<td>6</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MOC3053M</td>
<td>540</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise specified) (continued)

INDIVIDUAL COMPONENT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISO</td>
<td>Input–Output Isolation Voltage (Note 3)</td>
<td>f = 60 Hz, t = 1 Minute</td>
<td>4170</td>
<td></td>
<td></td>
<td>VAC RMS</td>
</tr>
<tr>
<td>RISO</td>
<td>Isolation Resistance</td>
<td>V_I–O = 500 V DC</td>
<td>10^11</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>CISO</td>
<td>Isolation Capacitance</td>
<td>V = 0 V, f = 1 MHz</td>
<td>0.2</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

1. Test voltage must be applied within dv/dt rating.
2. All devices will trigger at an IF value greater than or equal to the maximum IFT specification. For optimum operation over temperature and lifetime of the device, the LED should be biased with an IF that is at least 50% higher than the maximum IFT specification. The IF should not exceed the absolute maximum rating of 60 mA.
Example: For MOC3052M, the minimum IF bias should be 10 mA x 150% = 15 mA.
3. Isolation voltage, VISO, is an internal device dielectric breakdown rating. For this test, pins 1 and 2 are common, and pins 4, 5 and 6 are common.
MOC3051M, MOC3052M, MOC3053M

TYPICAL CHARACTERISTICS

Figure 1. LED Forward Voltage vs. Forward Current

Figure 2. On-State Characteristics

Figure 3. LED Trigger Current vs. Ambient Temperature

Figure 4. LED Trigger Current vs. LED Pulse Width

Figure 5. Holding Current vs. Ambient Temperature

Figure 6. Leakage Current vs. Ambient Temperature
APPLICATIONS INFORMATION

Basic Triac Driver Circuit

The random phase triac drivers MOC3051M, MOC3052M and MOC3053M can allow snubberless operations in applications where load is resistive and the external generated noise in the AC line is below its guaranteed dv/dt withstand capability. For these applications, a snubber circuit is not necessary when a noise insensitive power triac is used. Figure 7 shows the circuit diagram. The triac driver is directly connected to the triac main terminal 2 and a series resistor R which limits the current to the triac driver. Current limiting resistor R must have a minimum value which restricts the current into the driver to maximum 1 A.

The power dissipation of this current limiting resistor and the triac driver is very small because the power triac carries the load current as soon as the current through driver and current limiting resistor reaches the trigger current of the power triac. The switching transition times for the driver is only one micro second and for power triacs typical four micro seconds.

Triac Driver Circuit for Noisy Environments

When the transient rate of rise and amplitude are expected to exceed the power triacs and triac drivers maximum ratings a snubber circuit as shown in Figure 8 is recommended. Fast transients are slowed by the R–C snubber and excessive amplitudes are clipped by the Metal Oxide Varistor MOV.

Triac Driver Circuit for Extremely Noisy Environments

As specified in the noise standards IEEE472 and IEC255–4.

Industrial control applications do specify a maximum transient noise dv/dt and peak voltage which is super–imposed onto the AC line voltage. In order to pass this environment noise test a modified snubber network as shown in Figure 9 is recommended.

LED Trigger Current versus Temperature

Recommended operating LED control current IF lies between the guaranteed IFT and absolute maximum IF. Figure 3 shows the increase of the trigger current when the device is expected to operate at an ambient temperature below 25°C. Multiply the datasheet guaranteed IFT with the normalized IFT shown on this graph and an allowance for LED degradation over time.

Example:

IFT = 10 mA, LED degradation factor = 20%
IF at −40°C = 10 mA × 1.25 × 120% = 15 mA

LED Trigger Current vs. Pulse Width

Random phase triac drivers are designed to be phase controllable. They may be triggered at any phase angle within the AC sine wave. Phase control may be accomplished by an AC line zero cross detector and a variable pulse delay generator which is synchronized to the zero cross detector. The same task can be accomplished by a microprocessor which is synchronized to the AC zero crossing. The phase controlled trigger current may be a very short pulse which saves energy delivered to the input LED. LED trigger pulse currents shorter than 100 μs must have increased amplitude as shown on Figure 4. This graph shows the dependency of the trigger current IFT versus the pulse width. IFT in this graph is normalized in respect to the minimum specified IFT for static condition, which is specified in the device characteristic. The normalized IFT has to be multiplied with the devices guaranteed static trigger current.

Example:

IFT = 10 mA, Trigger PW = 4 μs
IF (pulsed) = 10 mA × 3 = 30 mA

Minimum LED Off Time in Phase Control Applications

In phase control applications, one intends to be able to control each AC sine half wave from 0° to 180°. Turn on at 0° means full power and turn on at 180° means zero power. This is not quite possible in reality because triac driver and triac have a fixed turn on time when activated at zero degrees. At a phase control angle close to 180° the driver’s turn on pulse at the trailing edge of the AC sine wave must be limited to end 200 μs before AC zero cross as shown in Figure 10. This assures that the triac driver has time to switch off. Shorter times may cause loss of control at the following half cycle.

Static dv/dt

Critical rate of rise of off–state voltage or static dv/dt is a triac characteristic that rates its ability to prevent false triggering in the event of fast rising line voltage transients when it is in the off–state. When driving a discrete power triac, the triac driver optocoupler switches back to off–state once the power triac is triggered. However, during the commutation of the power triac in application where the load is inductive, both triacs are subjected to fast rising voltages. The static dv/dt rating of the triac driver optocoupler and the commutating dv/dt rating of the power triac must be taken into consideration in snubber circuit design to prevent false triggering and commutation failure.
Figure 7. Basic Driver Circuit

Figure 8. Triac Driver Circuit for Noisy Environments

Typical Snubber values $R_S = 33 \, \Omega$, $C_S = 0.01 \, \mu F$

MOV (Metal Oxide Varistor) protects power triac and driver from transient overvoltages $> V_{DRM}$ max

Figure 9. Triac Driver Circuit for Extremely Noisy Environments

Recommended snubber to pass IEEE472 and IEC255–4 noise tests

$R_S = 47 \, \Omega$, $C_S = 0.01 \, \mu F$

Figure 10. Minimum Time for LED Turn Off to Zero Crossing

LED PW

LED Current

LED turn off min. 200 μs
REFLOW PROFILE

Figure 11. Reflow Profile

<table>
<thead>
<tr>
<th>Profile Feature</th>
<th>Pb–Free Assembly Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Minimum (Tsmin)</td>
<td>150°C</td>
</tr>
<tr>
<td>Temperature Maximum (Tmax)</td>
<td>200°C</td>
</tr>
<tr>
<td>Time (tS) from (Tsmin to Tmax)</td>
<td>60 seconds to 120 seconds</td>
</tr>
<tr>
<td>Ramp–up Rate (TL to TP)</td>
<td>3°C/second maximum</td>
</tr>
<tr>
<td>Liquidous Temperature (TL)</td>
<td>217°C</td>
</tr>
<tr>
<td>Time (tL) Maintained Above (TL)</td>
<td>60 seconds to 150 seconds</td>
</tr>
<tr>
<td>Peak Body Package Temperature</td>
<td>260°C +0°C /−5°C</td>
</tr>
<tr>
<td>Time (tP) within 5°C of 260°C</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Ramp–down Rate (TP to TL)</td>
<td>6°C/second maximum</td>
</tr>
<tr>
<td>Time 25°C to Peak Temperature</td>
<td>8 minutes maximum</td>
</tr>
</tbody>
</table>
ORDERING INFORMATION (Note 4)

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOC3051M</td>
<td>DIP 6–Pin</td>
<td>Tube (50 Units)</td>
</tr>
<tr>
<td>MOC3051SM</td>
<td>SMT 6–Pin (Lead Bend)</td>
<td>Tube (50 Units)</td>
</tr>
<tr>
<td>MOC3051SR2M</td>
<td>SMT 6–Pin (Lead Bend)</td>
<td>Tape and Reel (1000 Units)</td>
</tr>
<tr>
<td>MOC3051VM</td>
<td>DIP 6–Pin, DIN EN/IEC60747–5–5 Option</td>
<td>Tube (50 Units)</td>
</tr>
<tr>
<td>MOC3051SVM</td>
<td>SMT 6–Pin (Lead Bend), DIN EN/IEC60747–5–5 Option</td>
<td>Tube (50 Units)</td>
</tr>
<tr>
<td>MOC3051SR2VM</td>
<td>SMT 6–Pin (Lead Bend), DIN EN/IEC60747–5–5 Option</td>
<td>Tape and Reel (1000 Units)</td>
</tr>
<tr>
<td>MOC3051TVM</td>
<td>DIP 6–Pin, 0.4” Lead Spacing, DIN EN/IEC60747–5–5 Option</td>
<td>Tube (50 Units)</td>
</tr>
</tbody>
</table>

4. The product orderable part number system listed in this table also applies to the MOC3052M and MOC3053M product families.
NOTE:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
PDIP6 8.51x6.35, 2.54P
CASE 646BZ
ISSUE O

DATE 31 JUL 2016

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION