# <u>onsemi</u>

# **High Voltage Transistor**

# **PNP Silicon**

# **MMBT5401M3**

The MMBT5401M3 device is a spin-off of our popular SOT-23 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-723 surface mount package. This device is ideal for low-power surface mount applications where board space is at a premium.

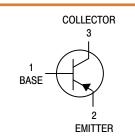
### Features

- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

### MAXIMUM RATINGS

| Rating                         | Symbol           | Value | Unit |
|--------------------------------|------------------|-------|------|
| Collector – Emitter Voltage    | V <sub>CEO</sub> | -150  | Vdc  |
| Collector – Base Voltage       | V <sub>CBO</sub> | -160  | Vdc  |
| Emitter – Base Voltage         | V <sub>EBO</sub> | -5.0  | Vdc  |
| Collector Current – Continuous | Ι <sub>C</sub>   | -60   | mAdc |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


### THERMAL CHARACTERISTICS

| Characteristic                                                                              | Symbol                            | Max         | Unit        |
|---------------------------------------------------------------------------------------------|-----------------------------------|-------------|-------------|
| Total Device Dissipation<br>FR-5 Board (Note 1)<br>$T_A = 25^{\circ}C$<br>Derate Above 25°C | PD                                | 130         | mW<br>mW/°C |
| Thermal Resistance,<br>Junction-to-Ambient (Note 1)                                         | $R_{\theta JA}$                   | 470         | °C/W        |
| Junction and Storage Temperature                                                            | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150 | °C          |

1. FR-5 @ 100 mm<sup>2</sup>, 1.0 oz. copper traces, still air.



SOT-723 CASE 631AA



### MARKING DIAGRAM



RJ = Specific Device Code M = Date Code

#### ORDERING INFORMATION

| Device           | Package              | Shipping <sup>†</sup> |
|------------------|----------------------|-----------------------|
| MMBT5401M3T5G    | SOT-723<br>(Pb-Free) | 8000 / Tape &<br>Reel |
| NSVMMBT5401M3T5G | SOT-723<br>(Pb-Free) | 8000 / Tape &<br>Reel |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D.</u>

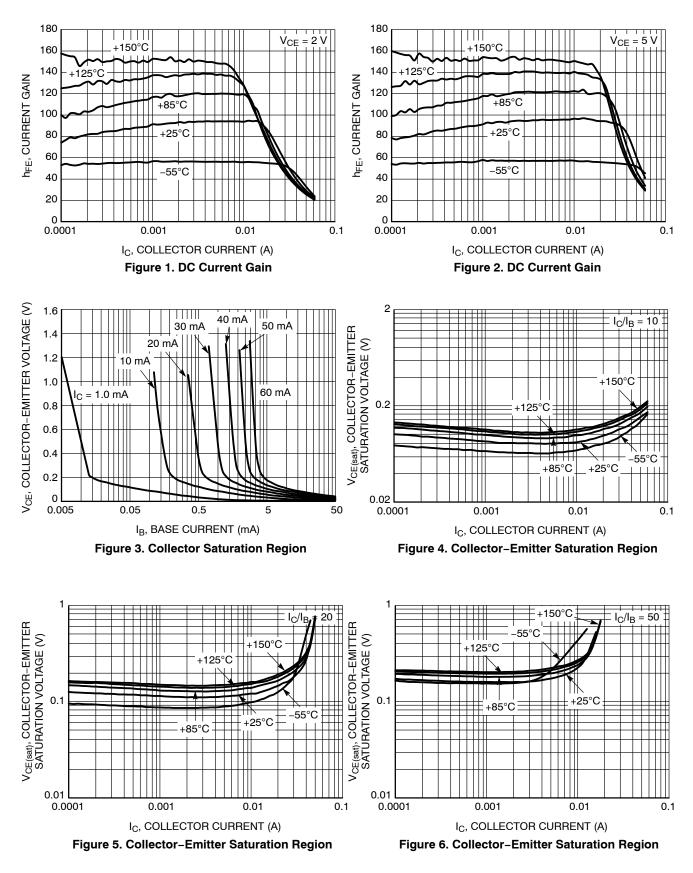
# **ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$ unless otherwise noted)

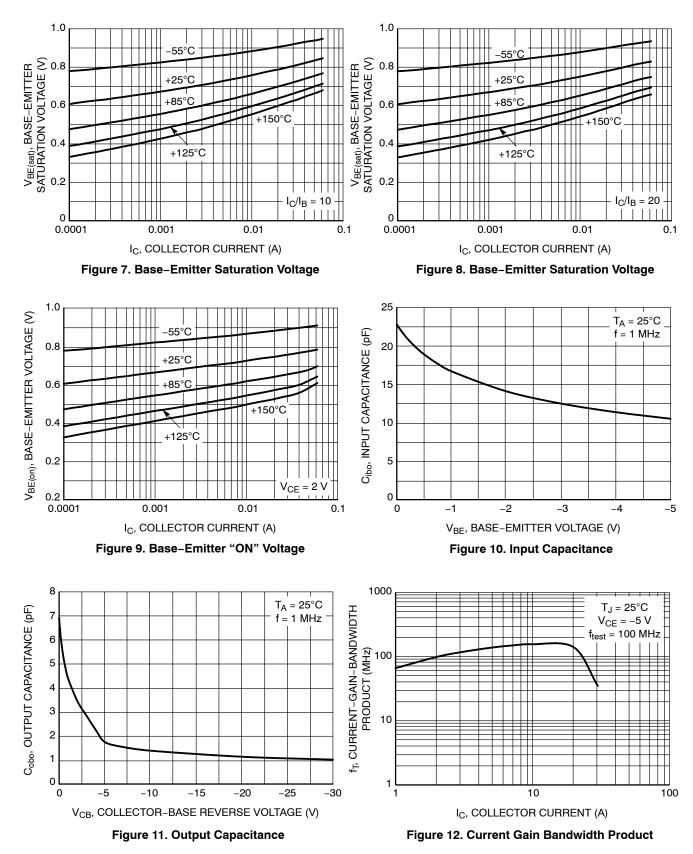
Noise Figure

(I\_C = -200  $\mu$ A, V<sub>CE</sub> = -5.0 V, R<sub>S</sub> = 10  $\Omega$ , f = 1.0 kHz)

| Characteristic                                                                                                                                                                        | Symbol               | Min            | Тур            | Max            | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|----------------|----------------|------|
| OFF CHARACTERISTICS                                                                                                                                                                   |                      |                |                |                |      |
| Collector – Emitter Breakdown Voltage $(I_C = -1.0 \text{ mA}, I_B = 0)$                                                                                                              | V <sub>(BR)CEO</sub> | -150           | _              | -              | V    |
| Collector – Base Breakdown Voltage $(I_C = -100 \ \mu A, I_E = 0)$                                                                                                                    | V <sub>(BR)CBO</sub> | -160           | _              | -              | V    |
| Emitter – Base Breakdown Voltage<br>( $I_E = -10 \ \mu A, I_C = 0$ )                                                                                                                  | V <sub>(BR)EBO</sub> | -5.0           | _              | -              | V    |
| Collector–Base Cutoff Current $(V_{CB} = -120 \text{ V}, I_E = 0)$                                                                                                                    | I <sub>CBO</sub>     | -              | -1.6           | -100           | nA   |
| Emitter Cutoff Current<br>( $V_{BE} = -5 V$ )                                                                                                                                         | I <sub>EBO</sub>     | -              | -0.20          | -100           | nA   |
| ON CHARACTERISTICS                                                                                                                                                                    |                      |                |                |                |      |
| DC Current Gain<br>( $I_C = -1.0 \text{ mA}, V_{CE} = -5.0 \text{ V}$ )<br>( $I_C = -10 \text{ mA}, V_{CE} = -5.0 \text{ V}$ )<br>( $I_C = -50 \text{ mA}, V_{CE} = -5.0 \text{ V}$ ) | h <sub>FE</sub>      | 50<br>60<br>20 | 80<br>90<br>40 | _<br>240<br>_  | _    |
| Collector – Emitter Saturation Voltage<br>( $I_C = -10 \text{ mA}, I_B = -1.0 \text{ mA}$ )<br>( $I_C = -50 \text{ mA}, I_B = -5.0 \text{ mA}$ )                                      | V <sub>CE(sat)</sub> | -              | -0.09<br>-0.15 | -0.25<br>-0.60 | V    |
| Base – Emitter Saturation Voltage<br>( $I_C = -10 \text{ mA}, I_B = -1.0 \text{ mA}$ )<br>( $I_C = -50 \text{ mA}, I_B = -5.0 \text{ mA}$ )                                           | V <sub>BE(sat)</sub> |                | -0.76<br>-0.92 | -1.0<br>-1.0   | V    |
| SMALL-SIGNAL CHARACTERISTICS                                                                                                                                                          |                      |                |                |                |      |
| Current – Gain — Bandwidth Product ( $I_C = -10$ mA, $V_{CE} = -5.0$ V, f = 100 MHz)                                                                                                  | f <sub>T</sub>       | 100            | 180            | 300            | MHz  |
| Input Capacitance ( $V_{EB} = -3 \text{ V}, I_C = 0, f = 1.0 \text{ MHz}$ )                                                                                                           | C <sub>ibo</sub>     | _              | 12.5           | 15             | pF   |
| Output Capacitance $(V_{CB} = -10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz})$                                                                                                           | C <sub>obo</sub>     | -              | 1.5            | 6.0            | pF   |
| Small Signal Current Gain<br>(I <sub>C</sub> = -1.0 mA, V <sub>CE</sub> = -10 V, f = 1.0 kHz)                                                                                         | h <sub>fe</sub>      | 40             | _              | 200            | _    |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


NF


dB

8.0

\_

### **TYPICAL CHARACTERISTICS**





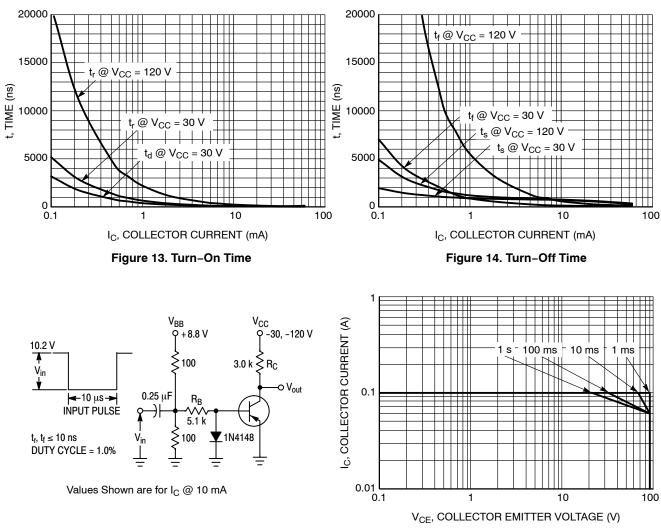
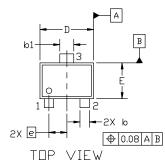
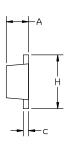



Figure 15. Switching Time Test Circuit

Figure 16. Safe Operating Area

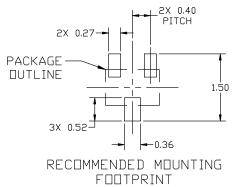




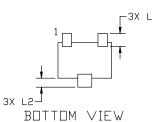


#### SOT-723 1.20x0.80x0.50, 0.40P CASE 631AA ISSUE E

DATE 24 JAN 2024

NDTES:


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. CONTROLLING DIMENSION: MILLIMETERS. 1.
- 2.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM З. LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, 4. PROTRUSIONS OR GATE BURRS.






SIDE VIEW

|   |     | MILLIMETERS |      |      |  |
|---|-----|-------------|------|------|--|
|   | DIM | MIN.        | NDM. | MAX. |  |
| 1 | А   | 0.45        | 0.50 | 0.55 |  |
|   | b   | 0.15        | 0.21 | 0.27 |  |
|   | b1  | 0.25        | 0.31 | 0.37 |  |
|   | С   | 0.07        | 0.12 | 0.17 |  |
|   | D   | 1.15        | 1.20 | 1.25 |  |
|   | E   | 0.75        | 0.80 | 0.85 |  |
|   | e   | 0.40 BSC    |      |      |  |
|   | Н   | 1.15        | 1.20 | 1.25 |  |
|   | L   | 0.29 REF    |      |      |  |
|   | L2  | 0.15        | 0.20 | 0.25 |  |



\*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.



GENERIC **MARKING DIAGRAM\*** 



XX = Specific Device Code Μ = Date Code

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

| 2. EMITTER 2.                                                                                                                                                                                             | II: STYLE 3:<br>ANODE PIN 1. ANODE<br>N/C 2. ANODE<br>CATHODE 3. CATHODE | STYLE 4:<br>PIN 1. CATHODE<br>2. CATHODE<br>3. ANODE | STYLE 5:<br>PIN 1. GATE<br>2. SOURCE<br>3. DRAIN |  |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|--|-------------|
| DOCUMENT NUMBER: 98AON12989D Electronic versions are uncontrolled except when accessed directly from the Document Repos   Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |                                                                          |                                                      |                                                  |  |             |
| DESCRIPTION: SOT-723 1.20x0.80x0.50, 0.4                                                                                                                                                                  |                                                                          |                                                      |                                                  |  | PAGE 1 OF 1 |

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make charges without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent\_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>