General Purpose Transistor

NPN Silicon

MMBT3904L, SMMBT3904L

Features
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector – Emitter Voltage</td>
<td>(V_{CEO})</td>
<td>40</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector – Base Voltage</td>
<td>(V_{CBO})</td>
<td>60</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter – Base Voltage</td>
<td>(V_{EBO})</td>
<td>6.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current – Continuous</td>
<td>(I_C)</td>
<td>200</td>
<td>mAdc</td>
</tr>
<tr>
<td>Collector Current – Peak (Note 3)</td>
<td>(I_{CM})</td>
<td>900</td>
<td>mAdc</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Device Dissipation FR–5 Board (Note 1) @(T_A = 25^\circ)C</td>
<td>(P_D)</td>
<td>225</td>
<td>mW</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>1.8</td>
<td>mW/°C</td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Ambient</td>
<td>(R_{JUA})</td>
<td>556</td>
<td>°C/W</td>
</tr>
<tr>
<td>Total Device Dissipation Alumina Substrate, (Note 2) @(T_A = 25^\circ)C</td>
<td>(P_D)</td>
<td>300</td>
<td>mW</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>2.4</td>
<td>mW/°C</td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Ambient</td>
<td>(R_{JUA})</td>
<td>417</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction and Storage Temperature</td>
<td>(T_J, T_{stg})</td>
<td>–55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. \(FR–5 = 1.0 \times 0.75 \times 0.062 \) in.
2. Alumina = 0.4 \(\times 0.3 \times 0.024 \) in. 99.5% alumina.
3. Reference SOA curve.

MARKING DIAGRAM

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMBT3904LT1G SMT</td>
<td>SOT–23</td>
<td>3000 / Tape & Reel</td>
</tr>
<tr>
<td>SMMBT3904LT1G SMD</td>
<td>SOT–23</td>
<td>10,000 / Tape & Reel</td>
</tr>
<tr>
<td>MMBT3904LT3G SMT</td>
<td>SOT–23</td>
<td>3000 / Tape & Reel</td>
</tr>
<tr>
<td>SMMBT3904LT3G SMD</td>
<td>SOT–23</td>
<td>10,000 / Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
MMBT3904L, SMMBT3904L

ELECTRICAL CHARACTERISTICS \((T_A = 25^\circ C\text{ unless otherwise noted})\)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector – Emitter Breakdown Voltage ((I_C = 1.0\ mAdc, I_B = 0))</td>
<td>(V_{(BR)CEO})</td>
<td>40</td>
<td>–</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector – Base Breakdown Voltage ((I_C = 10\ \mu Adc, I_B = 0))</td>
<td>(V_{(BR)CBO})</td>
<td>60</td>
<td>–</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter – Base Breakdown Voltage ((I_E = 10\ \mu Adc, I_C = 0))</td>
<td>(V_{(BR)EBO})</td>
<td>6.0</td>
<td>–</td>
<td>Vdc</td>
</tr>
<tr>
<td>Base Cutoff Current ((V_{CE} = 30\ Vdc, V_{EB} = 3.0\ Vdc))</td>
<td>(I_{BL})</td>
<td>–</td>
<td>50</td>
<td>nAdc</td>
</tr>
<tr>
<td>Collector Cutoff Current ((V_{CE} = 30\ Vdc, V_{EB} = 3.0\ Vdc))</td>
<td>(I_{CEX})</td>
<td>–</td>
<td>50</td>
<td>nAdc</td>
</tr>
</tbody>
</table>

ON CHARACTERISTICS (Note 4)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Current Gain</td>
<td>(H_F)</td>
<td>40</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>((I_C = 0.1\ mAdc, V_{CE} = 1.0\ Vdc))</td>
<td>(H_F)</td>
<td>70</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>((I_C = 10\ mAdc, V_{CE} = 1.0\ Vdc))</td>
<td>(H_F)</td>
<td>100</td>
<td>300</td>
<td>–</td>
</tr>
<tr>
<td>((I_C = 50\ mAdc, V_{CE} = 1.0\ Vdc))</td>
<td>(H_F)</td>
<td>60</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>((I_C = 100\ mAdc, V_{CE} = 1.0\ Vdc))</td>
<td>(H_F)</td>
<td>30</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Collector – Emitter Saturation Voltage ((I_C = 10\ mAdc, I_B = 1.0\ mAdc))</td>
<td>(V_{CE(sat)})</td>
<td>–</td>
<td>0.2</td>
<td>Vdc</td>
</tr>
<tr>
<td>((I_C = 50\ mAdc, I_B = 5.0\ mAdc))</td>
<td>(V_{CE(sat)})</td>
<td>–</td>
<td>0.3</td>
<td>Vdc</td>
</tr>
<tr>
<td>Base – Emitter Saturation Voltage ((I_C = 10\ mAdc, I_B = 1.0\ mAdc))</td>
<td>(V_{BE(sat)})</td>
<td>0.65</td>
<td>0.85</td>
<td>Vdc</td>
</tr>
<tr>
<td>((I_C = 50\ mAdc, I_B = 5.0\ mAdc))</td>
<td>(V_{BE(sat)})</td>
<td>–</td>
<td>0.95</td>
<td>Vdc</td>
</tr>
</tbody>
</table>

SMALL–SIGNAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current – Gain – Bandwidth Product ((I_C = 10\ mAdc, V_{CE} = 20\ Vdc, f = 100\ MHz))</td>
<td>(f_T)</td>
<td>300</td>
<td>–</td>
<td>MHz</td>
</tr>
<tr>
<td>Output Capacitance ((V_{CB} = 5.0\ Vdc, I_E = 0, f = 1.0\ MHz))</td>
<td>(C_{obo})</td>
<td>–</td>
<td>4.0</td>
<td>pF</td>
</tr>
<tr>
<td>Input Capacitance ((V_{EB} = 0.5\ Vdc, I_C = 0, f = 1.0\ MHz))</td>
<td>(C_{ibo})</td>
<td>–</td>
<td>8.0</td>
<td>pF</td>
</tr>
<tr>
<td>Input Impedance ((V_{CE} = 10\ Vdc, I_E = 1.0\ mAdc, f = 1.0\ kHz))</td>
<td>(h_{ie})</td>
<td>1.0</td>
<td>10</td>
<td>kΩ</td>
</tr>
<tr>
<td>Voltage Feedback Ratio ((V_{CE} = 10\ Vdc, I_C = 1.0\ mAdc, f = 1.0\ kHz))</td>
<td>(h_{re})</td>
<td>0.5</td>
<td>8.0</td>
<td>X 10^-4</td>
</tr>
<tr>
<td>Small – Signal Current Gain ((V_{CE} = 10\ Vdc, I_C = 1.0\ mAdc, f = 1.0\ kHz))</td>
<td>(h_{ie})</td>
<td>100</td>
<td>400</td>
<td>–</td>
</tr>
<tr>
<td>Output Admittance ((V_{CE} = 10\ Vdc, I_C = 1.0\ mAdc, f = 1.0\ kHz))</td>
<td>(h_{oe})</td>
<td>1.0</td>
<td>40</td>
<td>(\mu mhos)</td>
</tr>
<tr>
<td>Noise Figure ((V_{CE} = 5.0\ Vdc, I_C = 100\ \mu Adc, R_S = 1.0\ k\ ohms, f = 1.0\ kHz))</td>
<td>(NF)</td>
<td>–</td>
<td>5.0</td>
<td>dB</td>
</tr>
</tbody>
</table>

SWITCHING CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay Time ((V_{CC} = 3.0\ Vdc, V_{BE} = -0.5\ Vdc, I_C = 10\ mAdc, I_{B1} = 1.0\ mAdc))</td>
<td>(t_d)</td>
<td>–</td>
<td>35</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time ((V_{CC} = 3.0\ Vdc, I_C = 10\ mAdc, I_{B1} = 1.0\ mAdc))</td>
<td>(t_r)</td>
<td>–</td>
<td>35</td>
<td>ns</td>
</tr>
<tr>
<td>Storage Time ((V_{CC} = 3.0\ Vdc, I_C = 10\ mAdc, I_{B1} = I_{B2} = 1.0\ mAdc))</td>
<td>(t_s)</td>
<td>–</td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time ((V_{CC} = 3.0\ Vdc, I_C = 10\ mAdc, I_{B1} = I_{B2} = 1.0\ mAdc))</td>
<td>(t_f)</td>
<td>–</td>
<td>50</td>
<td>ns</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: Pulse Width \(\leq 300\ \mu s\), Duty Cycle \(\leq 2.0\%\).

![Figure 1. Delay and Rise Time Equivalent Test Circuit](image1)

![Figure 2. Storage and Fall Time Equivalent Test Circuit](image2)

* Total shunt capacitance of test jig and connectors

www.onsemi.com
TYPICAL TRANSIENT CHARACTERISTICS

Figure 3. Capacitance

Figure 4. Charge Data

Figure 5. Turn-On Time

Figure 6. Rise Time

Figure 7. Storage Time

Figure 8. Fall Time
MMBT3904L, SMMBT3904L

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS
NOISE FIGURE VARIATIONS
(V_{CE} = 5.0 Vdc, T_A = 25°C, Bandwidth = 1.0 Hz)

![Figure 9: Noise Figure vs Frequency](image1)

![Figure 10: Noise Figure vs Source Resistance](image2)

h PARAMETERS
(V_{CE} = 10 Vdc, f = 1.0 kHz, T_A = 25°C)

![Figure 11: Current Gain](image3)

![Figure 12: Output Admittance](image4)

![Figure 13: Input Impedance](image5)

![Figure 14: Voltage Feedback Ratio](image6)
TYPICAL STATIC CHARACTERISTICS

Figure 15. DC Current Gain

Figure 16. Collector Saturation Region
Figure 17. Collector Emitter Saturation Voltage vs. Collector Current

Figure 18. Base Emitter Saturation Voltage vs. Collector Current

Figure 19. Base Emitter Voltage vs. Collector Current

Figure 20. Temperature Coefficients

Figure 21. Current Gain Bandwidth vs. Collector Current

Figure 22. Safe Operating Area
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

SOT-23 (TO-236)

CASE 318-08

ISSUE AS

DATE 30 JAN 2018

NOTES:

2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

RECOMMENDED SOLDERING FOOTPRINT

SIDE VIEW

TOP VIEW

END VIEW

VIEW C

GENERAL MARKING DIAGRAM

SPECIFIC DEVICE CODE

STYLE 6:

- **PIN 1.** BASE
- **PIN 2.** EMITTER
- **PIN 3.** COLLECTOR

STYLE 7:

- **PIN 1.** EMITTER
- **PIN 2.** BASE
- **PIN 3.** COLLECTOR

STYLE 8:

- **PIN 1.** ANODE
- **PIN 2.** NO CONNECTION
- **PIN 3.** CATHODE

STYLE 9:

- **PIN 1.** ANODE
- **PIN 2.** DRAIN
- **PIN 3.** GATE

STYLE 10:

- **PIN 1.** CATHODE
- **PIN 2.** DRIVING
- **PIN 3.** SOURCE

STYLE 11:

- **PIN 1.** ANODE
- **PIN 2.** CATHODE
- **PIN 3.** CATHODE

STYLE 12:

- **PIN 1.** CATHODE
- **PIN 2.** CATHODE
- **PIN 3.** ANODE

STYLE 13:

- **PIN 1.** SOURCE
- **PIN 2.** CATHODE
- **PIN 3.** GATE

STYLE 14:

- **PIN 1.** CATHODE
- **PIN 2.** CATHODE
- **PIN 3.** ANODE

STYLE 15:

- **PIN 1.** ANODE
- **PIN 2.** CATHODE
- **PIN 3.** CATHODE

STYLE 16:

- **PIN 1.** ANODE
- **PIN 2.** CATHODE
- **PIN 3.** GATE

STYLE 17:

- **PIN 1.** NO CONNECTION
- **PIN 2.** CATHODE
- **PIN 3.** ANODE

STYLE 18:

- **PIN 1.** NO CONNECTION
- **PIN 2.** CATHODE
- **PIN 3.** ANODE

STYLE 19:

- **PIN 1.** NO CONNECTION
- **PIN 2.** CATHODE
- **PIN 3.** ANODE

STYLE 20:

- **PIN 1.** CATHODE
- **PIN 2.** CATHODE
- **PIN 3.** NO CONNECTION

STYLE 21:

- **PIN 1.** ANODE
- **PIN 2.** CATHODE
- **PIN 3.** CATHODE

STYLE 22:

- **PIN 1.** RETURN
- **PIN 2.** OUTPUT
- **PIN 3.** INPUT

STYLE 23:

- **PIN 1.** ANODE
- **PIN 2.** CATHODE
- **PIN 3.** SOURCE

STYLE 24:

- **PIN 1.** ANODE
- **PIN 2.** CATHODE
- **PIN 3.** GATE

STYLE 25:

- **PIN 1.** ANODE
- **PIN 2.** CATHODE
- **PIN 3.** NO CONNECTION

STYLE 26:

- **PIN 1.** ANODE
- **PIN 2.** CATHODE
- **PIN 3.** NO CONNECTION

DIMENSIONS: MILLIMETERS

<table>
<thead>
<tr>
<th>DIM</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.89</td>
<td>1.00</td>
<td>1.11</td>
<td>0.035</td>
<td>0.039</td>
<td>0.044</td>
</tr>
<tr>
<td>A1</td>
<td>0.01</td>
<td>0.06</td>
<td>0.10</td>
<td>0.000</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>B</td>
<td>0.37</td>
<td>0.44</td>
<td>0.50</td>
<td>0.015</td>
<td>0.017</td>
<td>0.020</td>
</tr>
<tr>
<td>c</td>
<td>0.08</td>
<td>0.14</td>
<td>0.20</td>
<td>0.003</td>
<td>0.006</td>
<td>0.008</td>
</tr>
<tr>
<td>D</td>
<td>2.80</td>
<td>2.90</td>
<td>3.04</td>
<td>0.110</td>
<td>0.114</td>
<td>0.120</td>
</tr>
<tr>
<td>E</td>
<td>1.20</td>
<td>1.30</td>
<td>1.40</td>
<td>0.047</td>
<td>0.051</td>
<td>0.055</td>
</tr>
<tr>
<td>L</td>
<td>0.30</td>
<td>0.43</td>
<td>0.55</td>
<td>0.012</td>
<td>0.017</td>
<td>0.022</td>
</tr>
<tr>
<td>L1</td>
<td>0.35</td>
<td>0.54</td>
<td>0.69</td>
<td>0.014</td>
<td>0.021</td>
<td>0.027</td>
</tr>
<tr>
<td>T</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>0°</td>
<td>10°</td>
<td>10°</td>
</tr>
</tbody>
</table>

RECOMMENDED

SOLDERING FOOTPRINT

NOTES:

2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

ISSUES AS

DATE 30 JAN 2018

SCALE 4:1

DOCUMENT NUMBER: 98ASB42226B

DESCRIPTION: SOT-23 (TO-236)

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.