onsemi

NPN General Purpose Transistor MMBT2222AM3T5G

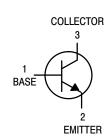
The MMBT2222AM3T5G device is a spin-off of our popular SOT-23 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-723 surface mount package. This device is ideal for low-power surface mount applications where board space is at a premium.

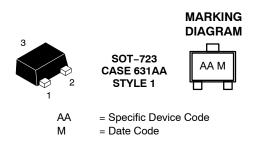
Features

- Reduces Board Space
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector – Base Voltage	V _{CBO}	75	Vdc
Emitter – Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	600	mAdc


THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) T _A = 25°C Derate above 25°C	P _D	265 2.1	m₩ mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	470	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	640 5.1	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	195	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.

2. Alumina = 0.4 \times 0.3 \times 0.024 in. 99.5% alumina.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT2222AM3T5G	SOT-723 (Pb-Free)	8000/Tape & Reel
NSVMMBT2222AM3T5G	SOT-723 (Pb-Free)	8000/Tape & Reel

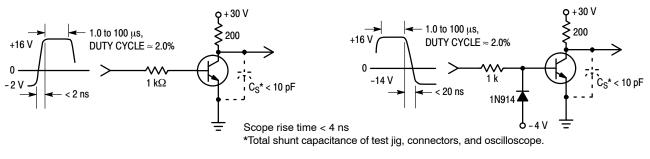
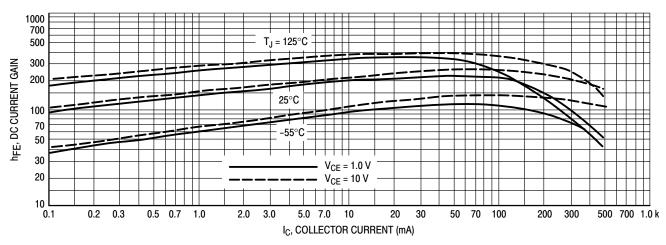
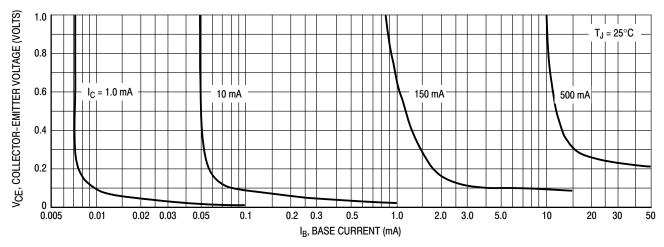
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

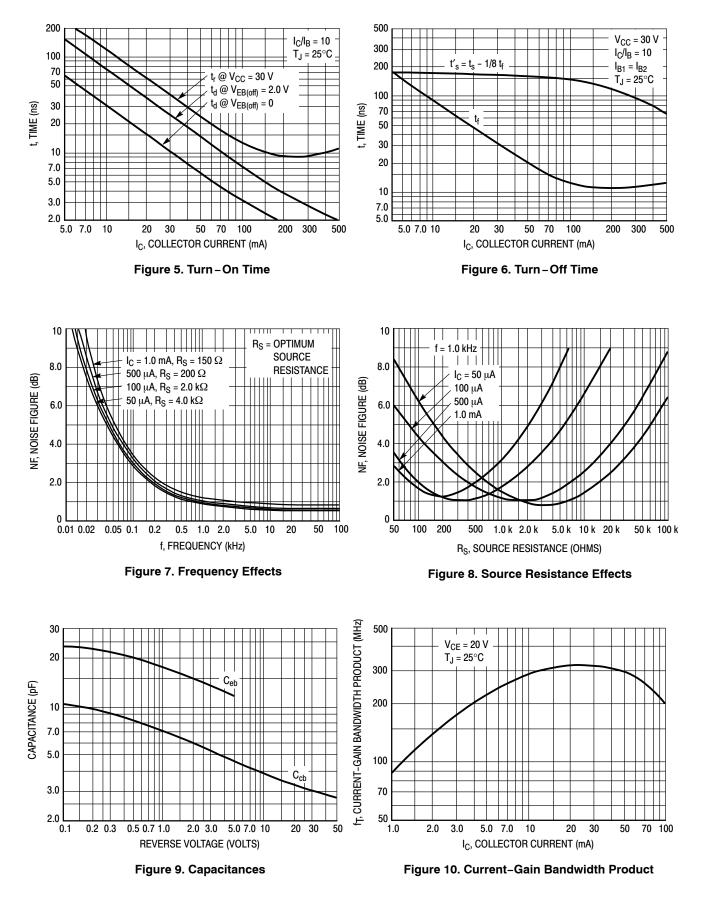
ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Charact	eristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS						
Collector – Emitter Breakdown Voltage (I _C =	10 mAdc, I _B = 0)	V _{(BR)CEO}	40	-	Vdc	
Collector – Base Breakdown Voltage ($I_C = 10$) μAdc, I _E = 0)	V _{(BR)CBO}	75	-	Vdc	
Emitter – Base Breakdown Voltage ($I_E = 10 \mu$	$Adc, I_C = 0)$	V _{(BR)EBO}	6.0	-	Vdc	
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB}	_(off) = 3.0 Vdc)	I _{CEX}	-	10	nAdc	
Collector Cutoff Current ($V_{CB} = 60 \text{ Vdc}, I_E = 0$) ($V_{CB} = 60 \text{ Vdc}, I_E = 0, T_A = 125^{\circ}\text{C}$)	I _{CBO}		0.01 10	μAdc	
Emitter Cutoff Current (V _{EB} = 3.0 Vdc, I_C = 0))	I _{EBO}	-	100	nAdc	
Base Cutoff Current (V_{CE} = 60 Vdc, $V_{EB(off)}$	= 3.0 Vdc)	I _{BL}	-	20	nAdc	
ON CHARACTERISTICS						
$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C}=0.1 \text{ mAdc}, V_{CE}=10 \text{ Vdc}) \\ (I_{C}=1.0 \text{ mAdc}, V_{CE}=10 \text{ Vdc}) \\ (I_{C}=10 \text{ mAdc}, V_{CE}=10 \text{ Vdc}) \\ (I_{C}=10 \text{ mAdc}, V_{CE}=10 \text{ Vdc}, T_{A}) \\ (I_{C}=150 \text{ mAdc}, V_{CE}=10 \text{ Vdc}) \\ (I_{C}=150 \text{ mAdc}, V_{CE}=1.0 \text{ Vdc}) \\ (I_{C}=500 \text{ mAdc}, V_{CE}=10 \text{ Vdc}) \\ \end{array} $	lote 3) Note 3)	h _{FE}	35 50 75 35 100 50 40	- - - 300 - -	_	
	V _{CE(sat)}		0.3 1.0	Vdc		
$\begin{array}{l} \text{Base}-\text{Emitter Saturation Voltage (Note 3)} \\ (I_{C}=150 \text{ mAdc}, I_{B}=15 \text{ mAdc}) \\ (I_{C}=500 \text{ mAdc}, I_{B}=50 \text{ mAdc}) \end{array}$	V _{BE(sat)}	0.6	1.2 2.0	Vdc		
SMALL-SIGNAL CHARACTERISTICS						
Current – Gain – Bandwidth Product (Note 4) (I_C = 20 mAdc, V_{CE} = 20 Vdc, f =		f _T	300	_	MHz	
Output Capacitance (V_{CB} = 10 Vdc, I_E = 0, f	= 1.0 MHz)	C _{obo}	-	8.0	pF	
Input Capacitance (V _{EB} = 0.5 Vdc, I_C = 0, f =	= 1.0 MHz)	C _{ibo}	-	25	pF	
Input Impedance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = (I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 10$	h _{ie}	2.0 0.25	8.0 1.25	kΩ		
Voltage Feedback Ratio ($I_C = 1.0$ mAdc, $V_{CE} = 10$ Vdc, f = ($I_C = 10$ mAdc, $V_{CE} = 10$ Vdc, f =	h _{re}		8.0 4.0	X 10 ⁻⁴		
$\label{eq:standard} \begin{array}{l} \mbox{Small} - \mbox{Signal Current Gain} \\ (I_C = 1.0 \mbox{ mAdc}, \mbox{ V}_{CE} = 10 \mbox{ Vdc}, \mbox{ f} = \\ (I_C = 10 \mbox{ mAdc}, \mbox{ V}_{CE} = 10 \mbox{ Vdc}, \mbox{ f} = \end{array}$	h _{fe}	50 75	300 375	-		
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = (I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = $	h _{oe}	5.0 25	35 200	μmhos		
Collector Base Time Constant (I_E = 20 mAdc, V _{CB} = 20 Vdc, f = 3	rb, C _c	_	150	ps		
Noise Figure (I_C = 100 μ Adc, V _{CE} = 10 Vdc, R _S = 1.0 kΩ, f = 1.0 kHz)		NF	-	4.0	dB	
SWITCHING CHARACTERISTICS		·	•	•		
Delay Time	(V _{CC} = 30 Vdc, V _{BE(off)} = -0.5 Vdc,	t _d	-	10	ns	
Rise Time	$I_{\rm C}$ = 150 mAdc, $I_{\rm B1}$ = 15 mAdc)	t _r	-	25		
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc,	t _s	-	225	1	
	$I_{B1} = I_{B2} = 15 \text{ mAdc}$	t _f	_	60	ns	

3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%. 4. f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

SWITCHING TIME EQUIVALENT TEST CIRCUITS


Figure 2. Turn-Off Time

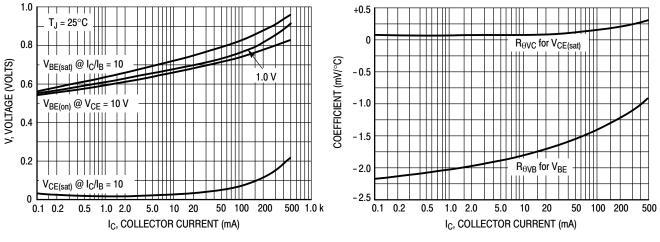
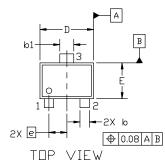
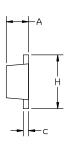


Figure 11. "On" Voltages

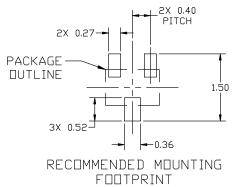
Figure 12. Temperature Coefficients

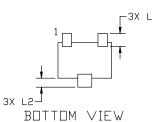



SOT-723 1.20x0.80x0.50, 0.40P CASE 631AA ISSUE E

DATE 24 JAN 2024

NDTES:


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. CONTROLLING DIMENSION: MILLIMETERS. 1.
- 2.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM З. LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, 4. PROTRUSIONS OR GATE BURRS.



SIDE VIEW

		MILLIMETERS			
	DIM	MIN.	NDM.	MAX.	
1	А	0.45	0.50	0.55	
	b	0.15	0.21	0.27	
	b1	0.25	0.31	0.37	
	С	0.07	0.12	0.17	
	D	1.15	1.20	1.25	
	E	0.75	0.80	0.85	
	e	0.40 BSC			
	Н	1.15	1.20	1.25	
	L	0.29 REF			
	L2	0.15	0.20	0.25	

*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC **MARKING DIAGRAM***

XX = Specific Device Code Μ = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

2. EMITTER 2.	II: STYLE 3: ANODE PIN 1. ANODE N/C 2. ANODE CATHODE 3. CATHODE	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN		
DOCUMENT NUMBER: 98AON12989D Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:			PAGE 1 OF 1		

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make charges without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>