MMBT2132T3

General Purpose Transistors

NPN Bipolar Junction Transistor

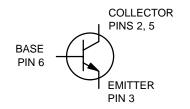
Features

• Pb-Free Package is Available

MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	30	V
Collector-Base Voltage	V _{CBO}	40	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Collector Current	Ic	700	mA
Base Current	Ι _Β	350	mA
Total Power Dissipation @ T _C = 25°C Total Power Dissipation @ T _C = 85°C Thermal Resistance, Junction–to–Ambient	P _D P _D	342 178	mW mW
(Note 1)	$R_{\theta JA}$	366	°C/W
Total Power Dissipation @ T _C = 25°C Total Power Dissipation @ T _C = 85°C Thermal Resistance, Junction–to–Ambient	P _D P _D	665 346	mW mW
(Note 2)	$R_{\theta JA}$	188	°C/W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


- 1. Minimum FR-4 or G-10 PCB, Operating to Steady State.
- Mounted onto a 2" square FR-4 Board (1" sq 2 oz Cu 0.06" thick single sided), Operating to Steady State.

ON Semiconductor®

http://onsemi.com

0.7 AMPS 30 VOLTS – $V_{(BR)CEO}$ 342 mW

TSOP-6/SC-74 CASE 318F STYLE 2

MARKING DIAGRAM

DC = Specific Device Code

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT2132T3	TSOP-6	10,000/Tape & Reel
MMBT2132T3G	TSOP-6 (Pb-Free)	10,000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MMBT2132T3

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Character	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector - Base Breakdown Voltage	$(I_C = 100 \mu Adc)$	V _{(BR)CBO}	40	_	_	Vdc
Collector - Emitter Breakdown Voltage	(I _C = 10 mAdc)	V _{(BR)CEO}	30	_	-	Vdc
Emitter-Base Breakdown Voltage	(I _E = 100 μAdc)	V _{(BR)EBO}	5.0	_	-	Vdc
Collector Cutoff Current (V _{CE}	$(V_{CB} = 25 \text{ Vdc}, I_E = 0 \text{ Adc})$ $s = 25 \text{ Vdc}, I_E = 0 \text{ Adc}, T_A = 125^{\circ}\text{C})$	I _{CBO}	-	- -	1.0 10	μAdc
Emitter Cutoff Current	(V _{EB} = 5.0 Vdc, I _C = 0 Adc)	I _{EBO}	-	_	10	μAdc
ON CHARACTERISTICS						
DC Current Gain	$(V_{CE} = 3.0 \text{ Vdc}, I_{C} = 100 \text{ mAdc})$	h _{FE}	150	_	-	Vdc
Collector - Emitter Saturation Voltage	$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	V _{CE(sat)}	-	_	0.25	Vdc
Collector - Emitter Saturation Voltage	(I _C = 700 mAdc, I _B = 70 mAdc)	V _{CE(sat)}	-	_	0.4	Vdc
Base-Emitter Saturation Voltage	$(I_C = 700 \text{ mAdc}, I_B = 70 \text{ mAdc})$	V _{BE(sat)}	-	_	1.1	Vdc
Collector-Emitter Saturation Voltage	$(I_C = 700 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	V _{BE(on)}	_	_	1.0	Vdc

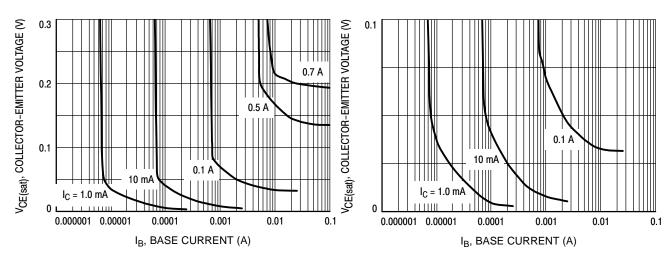


Figure 1. Collector Saturation Region

Figure 2. Collector Saturation Region

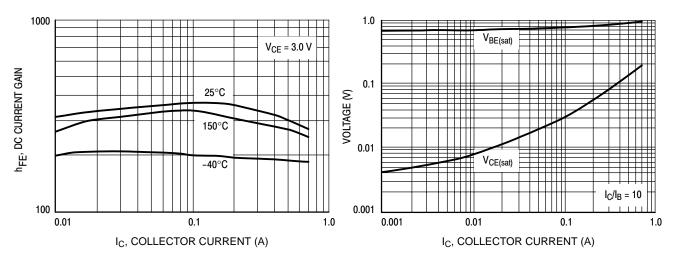


Figure 3. DC Current Gain

Figure 4. "ON" Voltages

MMBT2132T3

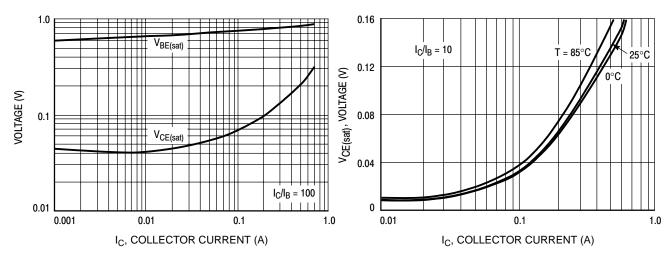


Figure 5. "ON" Voltages

Figure 6. Collector-Emitter Saturation Voltage

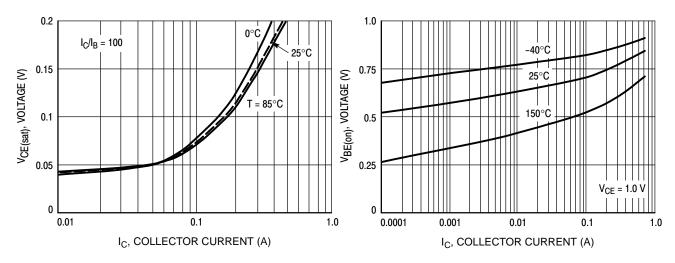


Figure 7. Collector-Emitter Saturation Voltage

Figure 8. V_{BE(on)} Voltage

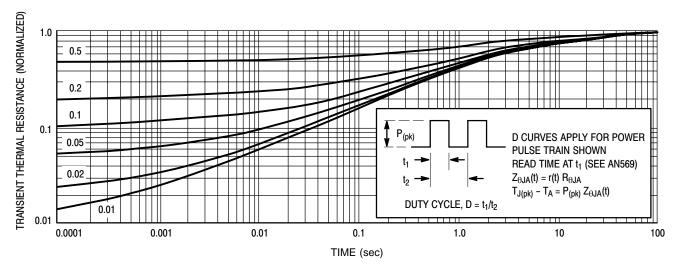
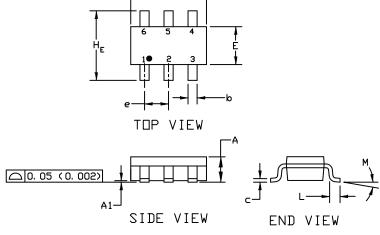


Figure 9. Thermal Response Curve


SC-74 CASE 318F ISSUE P

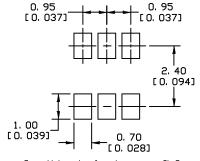
DATE 07 OCT 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
- 2. CONTROLLING DIMENSION: INCHES
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0. 90	1. 00	1. 10	0. 035	0. 039	0. 043
A1	0. 01	0. 06	0. 10	0. 001	0. 002	0. 004
ھ	0, 25	0. 37	0. 50	0. 010	0. 015	0. 020
U	0.10	0. 18	0. 26	0. 004	0. 007	0. 010
D	2. 90	3. 00	3. 10	0. 114	0. 118	0. 122
E	1. 30	1. 50	1. 70	0. 051	0. 059	0. 067
e	0. 85	0. 95	1. 05	0. 034	0. 037	0. 041
Η _E	2. 50	2. 75	3. 00	0. 099	0. 108	0. 118
١	0, 20	0. 40	0. 60	0, 008	0. 016	0. 024
М	0*		10*	0*		10*

GENERIC MARKING DIAGRAM*


XXX = Specific Device Code

M = Date Code

not follow the Generic Marking.

= Pb-Free Package
 (Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may

For additional information on our Pb-Free strategy and soldering details, please download the UN Semiconductor Soldering and Mounting Techniques Reference Manual, SULDERRM/D.

SOLDERING FOOTPRINT

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:	STYLE 6:
PIN 1. CATHODE	PIN 1. NO CONNECTION	PIN 1. EMITTER 1	PIN 1. COLLECTOR 2	PIN 1. CHANNEL 1	PIN 1. CATHODE
2. ANODE	2. COLLECTOR	2. BASE 1	2. EMITTER 1/EMITTER 2	2. ANODE	ANODE
CATHODE	EMITTER	COLLECTOR 2	COLLECTOR 1	CHANNEL 2	CATHODE
CATHODE	4. NO CONNECTION	4. EMITTER 2	4. EMITTER 3	CHANNEL 3	CATHODE
5. ANODE	COLLECTOR	5. BASE 2	BASE 1/BASE 2/COLLECTOR 3	CATHODE	CATHODE
CATHODE	6. BASE	COLLECTOR 1	6. BASE 3	CHANNEL 4	CATHODE
STYLE 7: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2	STYLE 8: PIN 1. EMITTER 1 2. BASE 2 3. COLLECTOR 2 4. EMITTER 2 5. BASE 1	STYLE 9: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1	STYLE 10: PIN 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE	STYLE 11: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODI 4. ANODE 5. CATHODE	≣
6. DRAIN 1	COLLECTOR 1	COLLECTOR 2	6. CATHODE	COLLECTOR	

DOCUMENT NUMBER:	98ASB42973B Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-74		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales