Dual D-Type Flip-Flop with Preset and Clear # MM74HC74A The MM74HC74A utilizes advanced silicon-gate CMOS technology to achieve operating speeds similar to the equivalent LS-TTL part. It possesses the high noise immunity and low power consumption of standard CMOS integrated circuits, along with the ability to drive 10 LS-TTL loads. This flip-flop has independent data, preset, clear, and clock inputs and Q and \overline{Q} outputs. The logic level present at the data input is transferred to the output during the positive-going transition of the clock pulse. Preset and clear are independent of the clock and accomplished by a low level at the appropriate input. The 74HC logic family is functionally and pinout compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground. #### **Features** - Typical Propagation Delay: 12 ns - Wide Power Supply Range: 2 V 6 V - Low Quiescent Current: 80 μA maximum (74HC Series) - Low Input Current: 1 µA Maximum - Fanout of 10 LS-TTL Loads - These Devices are Pb-Free, Halide Free and are RoHS Compliant #### **Connection Diagram** Figure 1. Pin Assignments for SOIC and TSSOP SOIC-14 CASE 751EF #### MARKING DIAGRAM HC74A = Specific Device Code A = Assembly Location WL, L = Wafer Lot Y = Year WW, W = Work Week #### **TRUTH TABLE** | | Inputs | | | | outs | |----|--------|----------|---|---------|---------| | PR | CLR | CLK | D | Q | Q | | L | Н | Х | Х | Н | L | | Н | L | Х | Х | L | Н | | L | L | Χ | Χ | Н | Н | | | | | | (Note1) | (Note1) | | Н | Н | ↑ | Н | Н | L | | Н | Н | ↑ | L | L | Н | | Н | Н | L | X | Q0 | Q0 | Q0 = the level of Q before the indicated input conditions were established. This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (HIGH) level. #### **ORDERING INFORMATION** See detailed ordering and shipping information on page 5 of this data sheet. #### **Logic Diagram** Figure 2. Logic Diagram #### MAXIMUM RATINGS (Note 2) | Symbol | | Rating | | |-----------------------------------|--|----------|---------------------------------| | V _{CC} | Supply Voltage | | −0.5 to +7.0 V | | V _{IN} | DC Input Voltage | | –0.5 to V _{CC} + 0.5 V | | V _{OUT} | DC Output Voltage | | –0.5 to V _{CC} + 0.5 V | | I _{IK} , I _{OK} | Clamp Diode Current | | ±20 mA | | lout | DC Output Current, per Pin | | ±25 mA | | Icc | DC V _{CC} or GND Current, per Pin | | ±50 mA | | T _{STG} | Storage Temperature Range | | –65°C to +150°C | | P _D | Power Dissipation | (Note 3) | 600 mW | | | S.O. Package Only | | 500 mW | | T _L | Lead Temperature (Soldering 10 S | Seconds) | 260°C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. # **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | | | Max | Unit | |------------------------------------|--|----------------------------|-------------|------|------| | V _{CC} | Supply Voltage | Supply Voltage | | 6 | V | | V _{IN} , V _{OUT} | DC Input or Output Voltage | DC Input or Output Voltage | | | V | | T _A | Operating Temperature Range | | – 55 | +125 | °C | | t _r , t _f | Input Rise or Fall Times V _{CC} = 2.0 V | | _ | 1000 | ns | | | V _{CC} = 4.5 V | | _ | 500 | ns | | | | V _{CC} = 6.0 V | - | 400 | ns | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. Unless otherwise specified all voltages are referenced to ground. Power Dissipation temperature derating – plastic "N" package: –12 mW/°C from 65°C to 85°C. #### MM74HC74A #### DC CHARACTERISTICS (Note 4) | | | | | T _A = | 25°C | T _A = -40°C
to 85°C | T _A = -55°C
to 125°C | | |-----------------|----------------------------------|---------------------|---|------------------|------|-----------------------------------|------------------------------------|------| | Symbol | Parameter | V _{CC} (V) | Conditions | Тур | G | Guaranteed Li | mits | Unit | | V _{IH} | Minimum HIGH Level Input | 2.0 | | - | 1.5 | 1.5 | 1.5 | V | | | Voltage | 4.5 | | - | 3.15 | 3.15 | 3.15 | | | | | 6.0 | | - | 4.2 | 4.2 | 4.2 | | | V _{IL} | Maximum LOW Level Input | 2.0 | | - | 0.5 | 0.5 | 0.5 | V | | | Voltage | 4.5 | | - | 1.35 | 1.35 | 1.35 | | | | | 6.0 | | - | 1.8 | 1.8 | 1.8 | | | V _{OH} | Minimum HIGH Level Output | 2.0 | $V_{IN} = V_{IH}$ or V_{IL} , | 2.0 | 1.9 | 1.9 | 1.9 | V | | | Voltage | 4.5 | 4.5 I _{OUT} ≤ 20 μA
6.0 | 4.5 | 4.4 | 4.4 | 4.4 | | | | | 6.0 | | 6.0 | 5.9 | 5.9 | 5.9 | | | | | 4.5 | $V_{IN} = V_{IH} \text{ or } V_{IL},$
$ I_{OUT} \le 4.0 \text{ mA}$ | 4.3 | 3.98 | 3.84 | 3.7 | | | | | 6.0 | $V_{IN} = V_{IH} \text{ or } V_{IL},$
$ I_{OUT} \le 5.2 \text{ mA}$ | 5.2 | 5.48 | 5.34 | 5.2 | | | V _{OL} | Maximum LOW Level Output | 2.0 | $V_{IN} = V_{IH}$ or V_{IL} , | 0 | 0.1 | 0.1 | 0.1 | V | | | Voltage | 4.5 | I _{OUT} ≤ 20 μA | 0 | 0.1 | 0.1 | 0.1 | | | | | 6.0 | | 0 | 0.1 | 0.1 | 0.1 | | | | | 4.5 | $V_{IN} = V_{IH} \text{ or } V_{IL},$
$ I_{OUT} \le 4.0 \text{ mA}$ | 0.2 | 0.26 | 0.33 | 0.4 | | | | | 6.0 | $V_{IN} = V_{IH} \text{ or } V_{IL},$
$ I_{OUT} \le 5.2 \text{ mA}$ | 0.2 | 0.26 | 0.33 | 0.4 | | | I _{IN} | Maximum Input Current | 6.0 | V _{IN} = V _{CC} or GND | - | ±0.1 | ±1.0 | ±1.0 | μΑ | | I _{CC} | Maximum Quiescent Supply Current | 6.0 | $V_{IN} = V_{CC}$ or GND,
$I_{OUT} = 0 \mu A$ | - | 4.0 | 40 | 80 | μΑ | ^{4.} For a power supply of 5 V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5 V. Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5 V and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used. # AC CHARACTERISTICS (V $_{CC}$ = 5 V, T_{A} = 25°C, C_{L} = 15 pF, t_{r} = t_{f} = 6 ns) | Symbol | Parameter | Conditions | Тур | Guaranteed
Limit | Unit | |-------------------------------------|--|------------|-----|---------------------|------| | f _{MAX} | Maximum Operating Frequency | | 72 | 30 | MHz | | t _{PHL} , t _{PLH} | Maximum Propagation Delay, Clock to Q or $\overline{\mathbf{Q}}$ | | 10 | 30 | ns | | t _{PHL} , t _{PLH} | Maximum Propagation Delay,
Preset or Clear to Q or Q | | 17 | 40 | ns | | t _{REM} | Minimum Removal Time,
Preset or Clear to Clock | | 6 | 5 | ns | | t _s | Minimum Setup Time, Data to Clock | | 10 | 20 | ns | | t _H | Minimum Hold Time, Clock to Data | | 0 | 0 | ns | | t _W | Minimum Pulse Width Clock, Preset or Clear | | 8 | 16 | ns | ### MM74HC74A # $\label{eq:characteristics} \textbf{AC CHARACTERISTICS} \ (C_L = 50 \ \text{pF}, \ t_r = t_f = 6 \ \text{ns} \ (\text{unless otherwise specified}))$ | | | | | T _A = | 25°C | T _A = -40°C
to 85°C | T _A = -55°C
to 125°C | | |-------------------------------------|--|---------------------|-----------------|------------------|------|-----------------------------------|------------------------------------|------| | Symbol | Parameter | V _{CC} (V) | Conditions | Тур | 0 | uaranteed Li | mits | Unit | | f_{MAX} | Maximum Operating Frequency | 2.0 | | 22 | 6 | 5 | 4 | ns | | | | 4.5 | | 72 | 30 | 24 | 20 | | | | | 6.0 | | 94 | 35 | 28 | 24 | | | t _{PHL} , t _{PLH} | Maximum Propagation Delay, | 2.0 | | 34 | 110 | 140 | 165 | ns | | | Clock to Q or Q | 4.5 | | 12 | 22 | 28 | 33 | | | | | 6.0 | | 10 | 19 | 24 | 28 | | | t _{PHL} , t _{PLH} | Maximum Propagation Delay, | 2.0 | | 66 | 150 | 190 | 225 | ns | | | Preset or Clear to Q or Q | 4.5 | | 20 | 30 | 38 | 45 | | | | | 6.0 | | 16 | 26 | 33 | 38 | | | t _{REM} | Minimum Removal Time, | 2.0 | | 20 | 50 | 65 | 75 | ns | | | Preset or Clear to Clock | 4.5 | | 6 | 10 | 13 | 15 | 15 | | | | 6.0 | | 5 | 9 | 11 | 13 | | | t _s | Minimum Setup Time, | 2.0 | | 35 | 80 | 100 | 120 | ns | | | Data to Clock | 4.5 | | 10 | 16 | 20 | 24 | | | | | 6.0 | | 8 | 14 | 17 | 20 | | | t _H | Minimum Hold Time, | 2.0 | | - | 0 | 0 | 0 | ns | | | Clock to Data | 4.5 | | - | 0 | 0 | 0 | | | | | 6.0 | | - | 0 | 0 | 0 | | | t _W | Minimum Pulse Width Clock, | 2.0 | | 30 | 80 | 101 | 119 | ns | | | Preset or Clear | 4.5 | | 9 | 16 | 20 | 24 | | | | | 6.0 | | 8 | 14 | 17 | 20 | | | t _{TLH} , t _{THL} | Maximum Output Rise and Fall Time | 2.0 | | 25 | 75 | 95 | 110 | ns | | | | 4.5 | | 7 | 15 | 19 | 22 | | | | | 6.0 | | 6 | 13 | 16 | 19 | | | t _r , t _f | Maximum Input Rise and Fall Time | 2.0 | | - | 1000 | 1000 | 1000 | ns | | | | 4.5 | | _ | 500 | 500 | 500 | | | | | 6.0 | | _ | 400 | 400 | 400 | | | C _{PD} | Power Dissipation Capacitance (Note 5) | | (per flip-flop) | 80 | - | - | - | pF | | C _{IN} | Maximum Input Capacitance | | | 5 | 10 | 10 | 10 | pF | ^{5.} C_{PD} determines the no load dynamic power consumption, P_D = C_{PD} V_{CC}² f + I_{CC} V_{CC}, and the no load dynamic current consumption, I_S = C_{PD} V_{CC} f + I_{CC}. ### MM74HC74A #### **ORDERING INFORMATION** | Part Number | Package | Shipping [†] | |---------------|---|-----------------------| | MM74HC74AM | SOIC-14, Case 751EF
(Pb-Free, Halide Free) | 55 Units / Tube | | MM74HC74AMTC | TSSOP-14, Case 948G-01
(Pb-Free, Halide Free) | 96 Units / Tube | | MM74HC74AMX | SOIC-14, Case 751EF
(Pb-Free, Halide Free) | 2500 / Tape & Reel | | MM74HC74AMTCX | TSSOP-14 WB, Case 948G-01
(Pb-Free, Halide Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. NOTE: Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number. SOIC14 CASE 751EF ISSUE O **DATE 30 SEP 2016** LAND PATTERN RECOMMENDATION # **NOTES:** - A. CONFORMS TO JEDEC MS-012, VARIATION AB, ISSUE C B. ALL DIMENSIONS ARE IN MILLIMETERS - C. DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS - LAND PATTERN STANDARD: SOIC127P600X145-14M - E. CONFORMS TO ASME Y14.5M, 2009 DETAIL A SCALE 16:1 | DOCUMENT NUMBER: | 98AON13739G | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|--|-------------|--| | DESCRIPTION: | SOIC14 | | PAGE 1 OF 1 | | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. **DATE 17 FEB 2016** - NOTES. 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD - FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE - INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL - INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR DEFERENCE ONLY - REFERENCE ONLY. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIMETERS | | INC | HES | |-----|-------------|------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | - | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 | BSC | 0.026 | BSC | | Н | 0.50 | 0.60 | 0.020 | 0.024 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 | | 0.252 | | | М | 0° | 8° | 0° | 8 ° | #### **GENERIC MARKING DIAGRAM*** = Assembly Location = Wafer Lot Υ = Year W = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. | SOLDERING | FOOTPRINT | |------------------|-------------------------| | 7. | 06 | | 1 | | | | | | | 0.65
PITCH | | 14X
0.36 1.26 | DIMENSIONS: MILLIMETERS | | DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (| | |------------------|-------------|---|-------------| | DESCRIPTION: | TSSOP-14 WB | | PAGE 1 OF 1 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales