onsemi

Quad 2-Input OR Gate

MM74HC32

General Description

The MM74HC32 OR gates utilize advanced silicon–gate CMOS technology to achieve operating speeds similar to LS–TTL gates with the low power consumption of standard CMOS integrated circuits.

All gates have buffered outputs providing high noise immunity and the ability to drive 10 LS–TTL loads. The 74HC logic family is functionally as well as pin–out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical Propagation Delay: 10 ns
- Wide Power Supply Range: 2 V 6 V
- Low Quiescent Current: 20 µA maximum (74HC Series)
- Low Input Current: 1 µA Maximum
- Fanout of 10 LS-TTL Loads
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

Connection Diagram

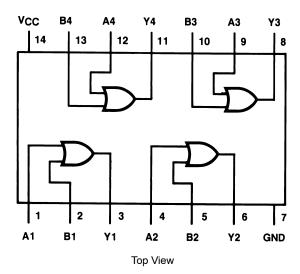


Figure 1. Pin Assignments for SOIC and TSSOP

Logic Diagram

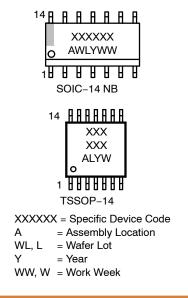


Figure 2. Logic Diagram

TSSOP-14 WB CASE 948G

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	–0.5 to +6.5 V
V _{IN}	DC Input Voltage	–0.5 to V _{CC} + 0.5 V
V _{OUT}	DC Output Voltage	–0.5 to V _{CC} + 0.5 V
I _{IK} , I _{OK}	Clamp Diode Current	±20 mA
I _{OUT}	DC Output Current, per Pin	±25 mA
I _{CC}	DC V _{CC} or GND Current, per Pin	±50 mA
T _{STG}	Storage Temperature Range	–65°C to +150°C
PD	Power Dissipation SOIC TSSOP	1077 mW 833 mW
ΤL	Lead Temperature (Soldering 10 Seconds)	260°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Unless otherwise specified all voltages are referenced to ground.

RECOMMENDED OPERATING CONDITIONS

Symbol		Parameter			Unit
V _{CC}	Supply Voltage		2	6	V
V _{IN} , V _{OUT}	DC Input or Output Voltage	0	V _{CC}	V	
T _A	Operating Temperature Range	-40	+85	°C	
t _r , t _f	Input Rise or Fall Times	V _{CC} = 2.0 V	-	1000	ns
		V _{CC} = 4.5 V	-	500	ns
		$V_{CC} = 6.0 V$	-	400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

MM74HC32

DC CHARACTERISTICS (Note 2)

				T _A =	25°C	$T_A = -40^{\circ}C$ to $85^{\circ}C$	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур	Gua	aranteed Limits	Unit
V _{IH}	Minimum HIGH Level Input Voltage	2.0		-	1.5	1.5	V
		4.5		-	3.15	3.15	
		6.0		-	4.2	4.2	
VIL	Maximum LOW Level Input Voltage	2.0		-	0.5	0.5	V
		4.5		-	1.35	1.35	
		6.0		-	1.8	1.8	
V _{OH}	Minimum HIGH Level Output Voltage	2.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$	2.0	1.9	1.9	V
		4.5	I _{OUT} ≤ 20 μΑ	4.5	4.4	4.4	
		6.0	6.0	6.0	5.9	5.9	
		4.5	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $ I_{OUT} \le 4.0 \text{ mA}$	4.2	3.98	3.84	
		6.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $ I_{OUT} \le 5.2 \text{ mA}$	5.2	5.48	5.34	
V _{OL}	Maximum LOW Level Output Voltage	2.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$	0	0.1	0.1	V
		4.5	I _{OUT} ≤ 20 μΑ	0	0.1	0.1	
		6.0		0	0.1	0.1	
		4.5	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $ I_{OUT} \le 4.0 \text{ mA}$	0.2	0.26	0.33	
		6.0	$V_{IN} = V_{IH} \text{ or } V_{IL}, I_{OUT} \le 5.2 \text{ mA}$	0.2	0.26	0.33	
I _{IN}	Maximum Input Current	6.0	$V_{IN} = V_{CC}$ or GND	-	±0.1	±1.0	μA
I _{CC}	Maximum Quiescent Supply Current	6.0	$V_{IN} = V_{CC} \text{ or}$ GND, $I_{OUT} = 0 \ \mu A$	-	2.0	20	μA

2. For a power supply of 5 V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5 V. Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5 V and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used.

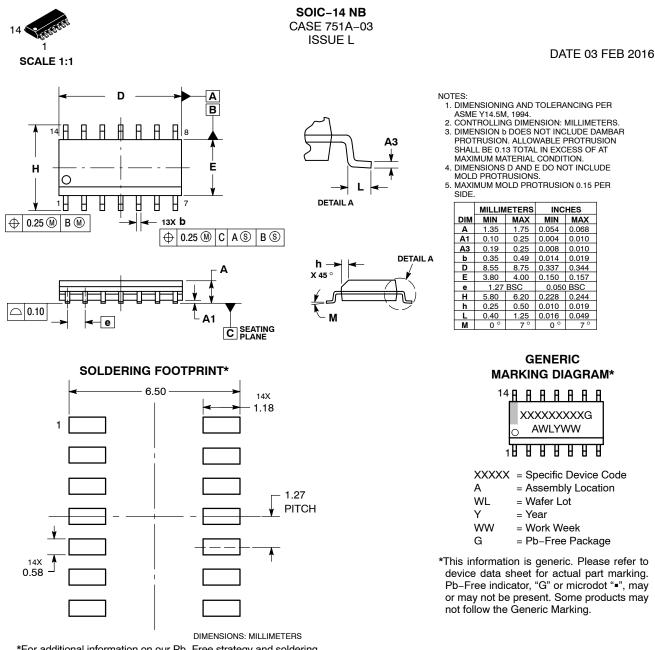
AC CHARACTERISTICS (V_{CC} = 5 V, T_A = 25^{\circ}C, C_L = 15 \text{ pF}, t_r = t_f = 6 \text{ ns})

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Unit
t _{PHL} , t _{PLH}	Maximum Propagation Delay		10	18	ns

AC CHARACTERISTICS (V_{CC} = 2.0 V to 6.0 V, C_L = 50 pF, $t_r = t_f$ = 6 ns (unless otherwise specified))

				T _A =	25°C	$T_A = -40^{\circ}C$ to $85^{\circ}C$	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур	Gua	aranteed Limits	Unit
t _{PHL} , t _{PLH}	Maximum Propagation Delay	2.0		30	100	125	ns
		4.5		12	20	25	
		6.0		9	17	21	
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time	2.0		30	75	95	ns
		4.5		8	15	19	
		6.0		7	13	16	
C _{PD}	Power Dissipation Capacitance (Note 3)		(per gate)	50	-	-	pF
CIN	Maximum Input Capacitance			5	10	10	pF

3. C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.


MM74HC32

ORDERING INFORMATION

Part Number	Marking	Package	Shipping [†]
MM74HC32M	HC32A	SOIC-14, Case 751A (Pb-Free, Halide-Free)	55 Units / Tube
MM74HC32MX	HC32A	SOIC-14, Case 751EF (Pb-Free, Halide-Free)	2500 Units / Tape & Reel
MM74HC32MTCX	HC 32A	TSSOP-14, Case 948G- (Pb-Free, Halide Free)	2500 Units / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

onsemi

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

 DOCUMENT NUMBER:
 98ASB42565B
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 SOIC-14 NB
 PAGE 1 OF 2

 onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi axis me any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

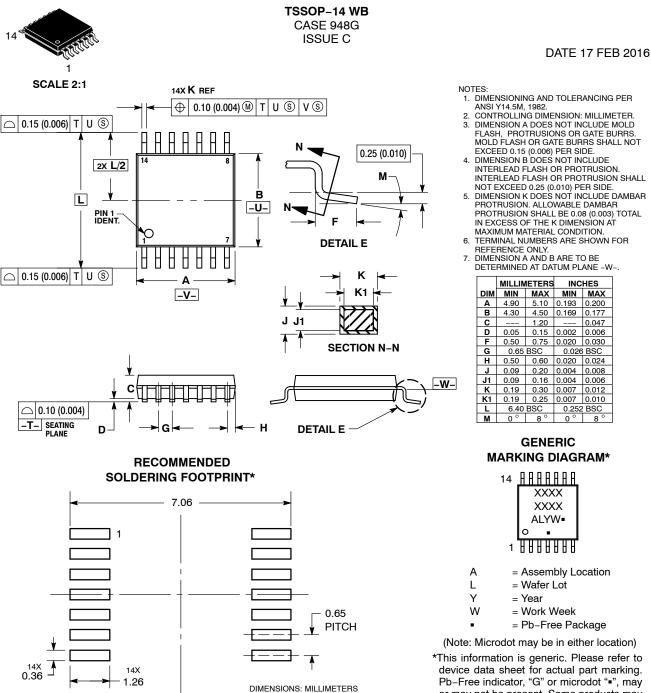
SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DESCRIPTION: SOIC-14 NB PAGE 2 OF	DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
BESCHIFTION. COIC-14 NB FAGE 2 OF	DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


onsemi

SOIC14 CASE 751EF **ISSUE O** DATE 30 SEP 2016 8.75 Α 8.50 0.65 7.62 14 8 14 8 В ₽ ╞ 4.00 6.00 5.60 3.80 Ħ = ╞ = Ħ 1.70 7 **PIN #1** 7 1.27 1 0.51 IDENT. 1.270.35 (0.33) - \oplus 0.25 (M) С В Α LAND PATTERN RECOMMENDATION TOP VIEW 1.75 MAX 0.25 0.19 0.10 С 1.50 0.25 1.25 0.10 SIDE VIEW FRONT VIEW NOTES: A. CONFORMS TO JEDEC MS-012, VARIATION AB, ISSUE C **B. ALL DIMENSIONS ARE IN MILLIMETERS** 0.50 0.25 × 45° C. DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS R0.10 GAGE D. LAND PATTERN STANDARD: PLANE SOIC127P600X145-14M E. CONFORMS TO ASME Y14.5M, 2009 R0.10 0.36 8° 0° 0.90 0.50 SEATING PLANE (1.04)**DETAIL A** SCALE 16:1

DOCUMENT NUMBER:	98AON13739G	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	SOIC14	-	PAGE 1 OF 1

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

semi

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED					
DESCRIPTION: TSSOP-14 WB PAGE 1 OF 1							
onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves							

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>