MOSFET - Power: 750 mAmps, 20 Volts
N–Channel SOT–23

These miniature surface mount MOSFETs low $R_{DS(on)}$ assure minimal power loss and conserve energy, making these devices ideal for use in space sensitive power management circuitry. Typical applications are dc–dc converters and power management in portable and battery–powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

Features
- Low $R_{DS(on)}$ Provides Higher Efficiency and Extends Battery Life
- Miniature SOT–23 Surface Mount Package Saves Board Space
- MVGSF Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free and are RoHS Compliant

MAXIMUM RATINGS ($T_J = 25°C$ unless otherwise noted)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain–to–Source Voltage</td>
<td>V_{DSS}</td>
<td>20</td>
<td>Vdc</td>
</tr>
<tr>
<td>Gate–to–Source Voltage – Continuous</td>
<td>V_{GS}</td>
<td>±20</td>
<td>Vdc</td>
</tr>
<tr>
<td>Drain Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Continuous @ $T_A = 25°C$</td>
<td>I_D</td>
<td>750</td>
<td>mA</td>
</tr>
<tr>
<td>– Pulsed Drain Current ($t_p \leq 10\mu s$)</td>
<td>I_{DM}</td>
<td>2000</td>
<td>mA</td>
</tr>
<tr>
<td>Total Power Dissipation @ $T_A = 25°C$</td>
<td>P_D</td>
<td>400</td>
<td>mW</td>
</tr>
<tr>
<td>Operating and Storage Temperature Range</td>
<td>T_{Ji}, T_{stg}</td>
<td>–55 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Ambient</td>
<td>R_{thJA}</td>
<td>300</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Lead Temperature for Soldering Purposes, 1/8” from case for 10 seconds</td>
<td>T_L</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

MARKING DIAGRAM/ PIN ASSIGNMENT

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGSF1N02LT1G</td>
<td>SOT–23 (Pb–Free)</td>
<td>3000 / Tape & Reel</td>
</tr>
<tr>
<td>MVGSF1N02LT1G*</td>
<td>SOT–23 (Pb–Free)</td>
<td>3000 / Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

(Note: Microdot may be in either location)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain–to–Source Breakdown Voltage</td>
<td>V(BR)DSS</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>Vdc</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>IDSS</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td>μAdc</td>
</tr>
<tr>
<td>Gate–Body Leakage Current</td>
<td>IGS</td>
<td>–</td>
<td>–</td>
<td>±100</td>
<td>nAdc</td>
</tr>
<tr>
<td>ON CHARACTERISTICS (Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>VGS(th)</td>
<td>1.0</td>
<td>1.7</td>
<td>2.4</td>
<td>Vdc</td>
</tr>
<tr>
<td>Static Drain–to–Source On–Resistance</td>
<td>rDSON</td>
<td>–</td>
<td>0.075</td>
<td>0.090</td>
<td>Ω</td>
</tr>
<tr>
<td>DYNAMIC CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>Ciss</td>
<td>–</td>
<td>125</td>
<td>–</td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>Coss</td>
<td>–</td>
<td>120</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Transfer Capacitance</td>
<td>Cross</td>
<td>–</td>
<td>45</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>SWITCHING CHARACTERISTICS (Note 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn–On Delay Time</td>
<td>t(on)</td>
<td>–</td>
<td>2.5</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>tr</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Turn–Off Delay Time</td>
<td>t(off)</td>
<td>–</td>
<td>16</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td>tf</td>
<td>–</td>
<td>8.0</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Gate Charge (See Figure 6)</td>
<td>QT</td>
<td>–</td>
<td>6000</td>
<td>–</td>
<td>pC</td>
</tr>
<tr>
<td>SOURCE–DRAIN DIODE CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Current</td>
<td>IS</td>
<td>–</td>
<td>–</td>
<td>0.6</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Current</td>
<td>ISM</td>
<td>–</td>
<td>–</td>
<td>0.75</td>
<td>–</td>
</tr>
<tr>
<td>Forward Voltage (Note 2)</td>
<td>VSD</td>
<td>–</td>
<td>0.8</td>
<td>–</td>
<td>V</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
2. Switching characteristics are independent of operating junction temperature.

TYPICAL ELECTRICAL CHARACTERISTICS
TYPICAL ELECTRICAL CHARACTERISTICS

Figure 3. On−Resistance versus Drain Current

Figure 4. On−Resistance versus Drain Current

Figure 5. On−Resistance Variation with Temperature

Figure 6. Gate Charge

Figure 7. Body Diode Forward Voltage

Figure 8. Capacitance
SOT–23 (TO–236)
CASE 318
ISSUE AT
DATE 01 MAR 2023

NOTES:
2. CONTROLLING DIMENSION MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

<table>
<thead>
<tr>
<th>DIM</th>
<th>MILLIMETERS</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.89</td>
<td>1.00</td>
</tr>
<tr>
<td>A1</td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>b</td>
<td>0.37</td>
<td>0.44</td>
</tr>
<tr>
<td>c</td>
<td>0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>D</td>
<td>2.80</td>
<td>2.90</td>
</tr>
<tr>
<td>E</td>
<td>1.20</td>
<td>1.30</td>
</tr>
<tr>
<td>e</td>
<td>1.78</td>
<td>1.90</td>
</tr>
<tr>
<td>L</td>
<td>0.30</td>
<td>0.43</td>
</tr>
<tr>
<td>L1</td>
<td>0.35</td>
<td>0.54</td>
</tr>
<tr>
<td>H2</td>
<td>2.10</td>
<td>2.40</td>
</tr>
<tr>
<td>T</td>
<td>0°</td>
<td>---</td>
</tr>
</tbody>
</table>

GENERIC MARKING DIAGRAM

XXX = Specific Device Code
M = Date Code
* = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "∗", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2
Style 1 Thru 5: CANCELLED
- **Style 6:**
 - PIN 1: BASE
 - PIN 2: EMMITTER
 - PIN 3: COLLECTOR
- **Style 7:**
 - PIN 1: EMITTER
 - PIN 2: BASE
 - PIN 3: NO CONNECTION
- **Style 8:**
 - PIN 1: ANODE
 - PIN 2: COLLECTOR
 - PIN 3: CATHODE

Style 9:
- PIN 1: ANODE
- PIN 2: ANODE
- PIN 3: CATHODE

Style 10:
- PIN 1: DRAIN
- PIN 2: SOURCE
- PIN 3: GATE

Style 11:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: CATHODE-ANODE

Style 12:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: CATHODE-ANODE

Style 13:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: CATHODE

Style 14:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: CATHODE

Style 15:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: CATHODE

Style 16:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: CATHODE

Style 17:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: CATHODE

Style 18:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: CATHODE

Style 19:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: CATHODE

Style 20:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: CATHODE

Style 21:
- PIN 1: GATE
- PIN 2: SOURCE
- PIN 3: DRAIN

Style 22:
- PIN 1: RETURN
- PIN 2: OUTPUT
- PIN 3: INPUT

Style 23:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: DRAIN

Style 24:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: SOURCE

Style 25:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: GATE

Style 26:
- PIN 1: ANODE
- PIN 2: CATHODE
- PIN 3: NO CONNECTION

Style 27:
- PIN 1: CATHODE
- PIN 2: CATHODE
- PIN 3: CATHODE

Style 28:
- PIN 1: CATHODE
- PIN 2: CATHODE
- PIN 3: CATHODE

Document Number: 98ASB42226B
Description: SOT–23 (TO–236)
Page: 2 of 2

© Semiconductor Components Industries, LLC, 2019
www.onsemi.com

onsemi and ON Semiconductor are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.