

# Hex Schmitt Trigger MC14584B

The MC14584B Hex Schmitt Trigger is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These devices find primary use where low power dissipation and/or high noise immunity is desired. The MC14584B may be used in place of the MC14069UB hex inverter for enhanced noise immunity to "square up" slowly changing waveforms.

#### **Features**

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load over the Rated Temperature Range
- Double Diode Protection on All Inputs
- Can Be Used to Replace MC14069UB
- For Greater Hysteresis, Use MC14106B which is Pin-for-Pin Replacement for CD40106B and MM74Cl4
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

#### MAXIMUM RATINGS (Voltages Referenced to VSS)

| Symbol                             | Parameter                                         | Value                         | Unit |
|------------------------------------|---------------------------------------------------|-------------------------------|------|
| $V_{DD}$                           | DC Supply Voltage Range                           | -0.5 to +18.0                 | V    |
| V <sub>in</sub> , V <sub>out</sub> | Input or Output Voltage Range (DC or Transient)   | -0.5 to V <sub>DD</sub> + 0.5 | V    |
| I <sub>in</sub> , I <sub>out</sub> | Input or Output Current (DC or Transient) per Pin | ±10                           | mA   |
| P <sub>D</sub>                     | Power Dissipation, per Package (Note 1)           | 500                           | mW   |
| T <sub>A</sub>                     | Ambient Temperature Range                         | -55 to +125                   | °C   |
| T <sub>stg</sub>                   | Storage Temperature Range                         | -65 to +150                   | °C   |
| TL                                 | Lead Temperature<br>(8-Second Soldering)          | 260                           | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Operating the device outside its recommended conditions, but still within its maximum rated limits may not cause immediate damage. However, doing so can lead to reduced performance, unpredictable behavior, and potentially shorten the device's lifespan or reliability.

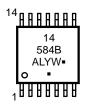
1. Temperature Derating:

"D/DT" Packages: -7.0 mW/°C From 65 °C To 125 °C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation,  $V_{in}$  and  $V_{out}$  should be constrained to the range  $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either  $V_{SS}$  or  $V_{DD}$ ). Unused outputs must be left open.

#### MARKING DIAGRAMS




SOIC-14 D SUFFIX CASE 751A





TSSOP-14 DT SUFFIX CASE 948G





SOEIAJ-14 F SUFFIX CASE 965

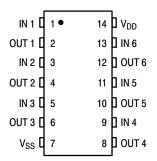


A = Assembly Location

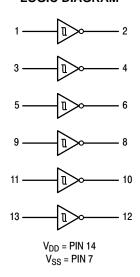
WL, L = Wafer Lot YY, Y = Year WW, W = Work Week

G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

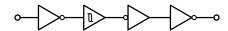

#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.


NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 2.

# MC14584B

# **PIN ASSIGNMENT**




# **LOGIC DIAGRAM**



# **EQIVALENT CIRCUIT SCHEMATIC**

(1/6 OF CIRCUIT SHOWN)



#### **ORDERING INFORMATION**

| Device          | Package   | Shipping <sup>†</sup> |
|-----------------|-----------|-----------------------|
| MC14584BDG      | SOIC-14   | 55 Units / Rail       |
| MC14584BDR2G    | (Pb-Free) | 2500 / Tape & Reel    |
| NLV14584BDR2G*  |           | 2500 / Tape & Reel    |
| MC14584BDTR2G   | TSSOP-14  | 2500 / Tape & Reel    |
| NLV14584BDTR2G* | (Pb-Free) | 2500 / Tape & Reel    |

# **DISCONTINUED** (Note 2)

| NLV14584BDG* | SOIC-14<br>(Pb-Free) | 55 Units / Rail    |
|--------------|----------------------|--------------------|
| MC14584BFG   | SOEIAJ-14            | 50 Units / Rail    |
| MC14584BFELG | (Pb-Free)            | 2000 / Tape & Reel |

<sup>†</sup> For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

<sup>\*</sup> NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

<sup>2.</sup> **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on <a href="https://www.onsemi.com">www.onsemi.com</a>.

#### MC14584B

# **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V<sub>SS</sub>)

|                                                                                                                                              |                               | V <sub>DD</sub>        | -55                           | s °C                 |                               | 25 °C                                           |                      | 125                           | 5 °C                 |      |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|-------------------------------|----------------------|-------------------------------|-------------------------------------------------|----------------------|-------------------------------|----------------------|------|
| Characteristic                                                                                                                               | Symbol                        | Vdc                    | Min                           | Max                  | Min                           | Typ <sup>(3)</sup>                              | Max                  | Min                           | Max                  | Unit |
| Output Voltage "0" Leve                                                                                                                      | l V <sub>OL</sub>             | 5.0<br>10<br>15        | -<br>-<br>-                   | 0.05<br>0.05<br>0.05 | -<br>-<br>-                   | 0<br>0<br>0                                     | 0.05<br>0.05<br>0.05 | -<br>-<br>-                   | 0.05<br>0.05<br>0.05 | Vdc  |
| V <sub>in</sub> = 0 "1" Leve                                                                                                                 | I V <sub>OH</sub>             | 5.0<br>10<br>15        | 4.95<br>9.95<br>14.95         | -<br>-<br>-          | 4.95<br>9.95<br>14.95         | 5.0<br>10<br>15                                 | -<br>-<br>-          | 4.95<br>9.95<br>14.95         | -<br>-<br>-          | Vdc  |
| Output Drive Current $(V_{OH} = 2.5 \text{ Vdc})$ $(V_{OH} = 4.6 \text{ Vdc})$ $(V_{OH} = 9.5 \text{ Vdc})$ $(V_{OH} = 13.5 \text{ Vdc})$    | I <sub>OH</sub>               | 5.0<br>5.0<br>10<br>15 | -3.0<br>-0.64<br>-1.6<br>-4.2 | -<br>-<br>-          | -2.4<br>-0.51<br>-1.3<br>-3.4 | -4.2<br>-0.88<br>-2.25<br>-8.8                  | -<br>-<br>-          | -1.7<br>-0.36<br>-0.9<br>-2.4 | -<br>-<br>-          | mAdc |
| $(V_{OL} = 0.4 \text{ Vdc})$ Sin<br>$(V_{OL} = 0.5 \text{ Vdc})$<br>$(V_{OL} = 1.5 \text{ Vdc})$                                             | ( I <sub>OL</sub>             | 5.0<br>10<br>15        | 0.64<br>1.6<br>4.2            | -<br>-<br>-          | 0.51<br>1.3<br>3.4            | 0.88<br>2.25<br>8.8                             | -<br>-<br>-          | 0.36<br>0.9<br>2.4            | -<br>-<br>-          | mAdc |
| Input Current                                                                                                                                | l <sub>in</sub>               | 15                     | _                             | ±0.1                 | _                             | ±0.00001                                        | ±0.1                 | _                             | ±1.0                 | μAdc |
| Input Capacitance (V <sub>in</sub> = 0)                                                                                                      | C <sub>in</sub>               | -                      | -                             | -                    | _                             | 5.0                                             | 7.5                  | _                             | _                    | pF   |
| Quiescent Current<br>(Per Package)                                                                                                           | I <sub>DD</sub>               | 5.0<br>10<br>15        |                               | 0.25<br>0.5<br>1.0   | -<br>-<br>-                   | 0.0005<br>0.0010<br>0.0015                      | 0.25<br>0.5<br>1.0   | -<br>-<br>-                   | 7.5<br>15<br>30      | μAdc |
| Total Supply Current <sup>(4) (5)</sup> (Dynamic plus Quiescent, Per Package) (C <sub>L</sub> = 50 pF on all outputs, all buffers switching) | I <sub>T</sub>                | 5.0<br>10<br>15        |                               |                      | $I_T = (3$                    | I.8 μΑ/kHz) f<br>3.6 μΑ/kHz) f<br>5.4 μΑ/kHz) f | + I <sub>DD</sub>    |                               |                      | μAdc |
| Hysteresis Voltage                                                                                                                           | V <sub>H</sub> <sup>(6)</sup> | 5.0<br>10<br>15        | 0.27<br>0.36<br>0.77          | 1.0<br>1.3<br>1.7    | 0.25<br>0.3<br>0.6            | 0.6<br>0.7<br>1.1                               | 1.0<br>1.2<br>1.5    | 0.21<br>0.25<br>0.50          | 1.0<br>1.2<br>1.4    | Vdc  |
| Threshold Voltage<br>Positive-Going                                                                                                          | V <sub>T+</sub>               | 5.0<br>10<br>15        | 1.9<br>3.4<br>5.2             | 3.5<br>7.0<br>10.6   | 1.8<br>3.3<br>5.2             | 2.7<br>5.3<br>8.0                               | 3.4<br>6.9<br>10.5   | 1.7<br>3.2<br>5.2             | 3.4<br>6.9<br>10.5   | Vdc  |
| Negative-Going                                                                                                                               | V <sub>T</sub>                | 5.0<br>10<br>15        | 1.6<br>3.0<br>4.5             | 3.3<br>6.7<br>9.7    | 1.6<br>3.0<br>4.6             | 2.1<br>4.6<br>6.9                               | 3.2<br>6.7<br>9.8    | 1.5<br>3.0<br>4.7             | 3.2<br>6.7<br>9.9    | Vdc  |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where:  $I_T$  is in  $\mu A$  (per package),  $C_L$  in pF,  $V = (V_{DD} - V_{SS})$  in volts, f in kHz is input frequency, and k = 0.001.

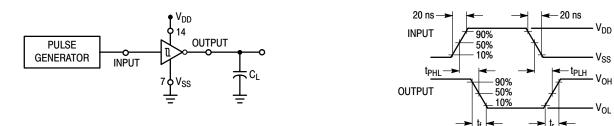
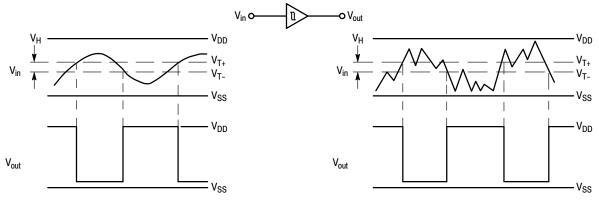
6.  $V_H = V_{T+} - V_{T-}$  (But maximum variation of  $V_H$  is specified as less than  $V_{T+max} - V_{T-min}$ ).

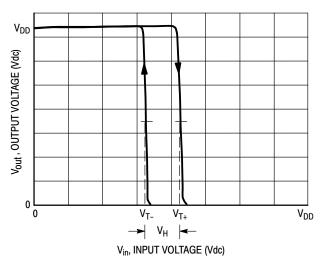
# SWITCHING CHARACTERISTICS ( $C_L = 50 \text{ pF}, T_A = 25 \text{ }^{\circ}\text{C}$ )

| Characteristic         | Symbol                              | V <sub>DD</sub><br>Vdc | Min         | Typ <sup>(7)</sup> | Max              | Unit |
|------------------------|-------------------------------------|------------------------|-------------|--------------------|------------------|------|
| Output Rise Time       | tтLH                                | 5.0<br>10<br>15        | -<br>-<br>- | 100<br>50<br>40    | 200<br>100<br>80 | ns   |
| Output Fall Time       | t <sub>THL</sub>                    | 5.0<br>10<br>15        | -<br>-<br>- | 100<br>50<br>40    | 200<br>100<br>80 | ns   |
| Propagation Delay Time | t <sub>PLH</sub> , t <sub>PHL</sub> | 5.0<br>10<br>15        |             | 125<br>50<br>40    | 250<br>100<br>80 | ns   |

7. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

<sup>4.</sup> The formulas given are for the typical characteristics only at 25 °C.
5. To calculate total supply current at loads other than 50 pF:



Figure 1. Switching Time Test Circuit and Waveforms



(a) Schmitt Triggers will square up inputs with slow rise and fall times.

(b) A Schmitt trigger offers maximum noise immunity in gate applications.

Figure 2. Typical Schmitt Trigger Applications



**Figure 3. Typical Transfer Characteristics** 

# MC14584B

# **REVISION HISTORY**

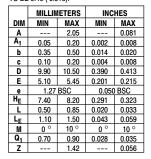
| Revision | Description of Changes                                                                                                  | Date      |
|----------|-------------------------------------------------------------------------------------------------------------------------|-----------|
| 10       | Rebranded the Data Sheet to <b>onsemi</b> format.<br>NLV14584BDG, MC14584BFG, MC14584BFELG OPNs marked as Discontinued. | 10/7/2025 |

This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.





SOEIAJ-14 CASE 965-01 **ISSUE B** 


**DATE 29 FEB 2008** 

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)
- PER SIDE.

  4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

  5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION.

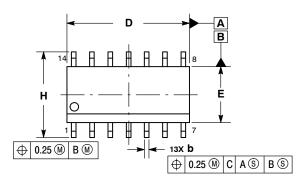
  DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE
  BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018).

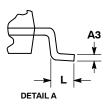


| 14                                                                        | M° Q <sub>1</sub> DETAIL P |
|---------------------------------------------------------------------------|----------------------------|
| VIEV<br>A<br>A<br>A <sub>1</sub><br>(a) 0.13 (0.005) (b) (a) 0.10 (0.004) | V P                        |

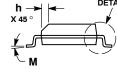
| DOCUMENT NUMBER: | 98ASH70108A  | Electronic versions are uncontrolled except when accessed directly from the Document R-<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | 14 LD SOEIAJ |                                                                                                                                                                            | PAGE 1 OF 1 |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.



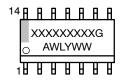

△ 0.10


SOIC-14 NB CASE 751A-03 ISSUE L

**DATE 03 FEB 2016** 









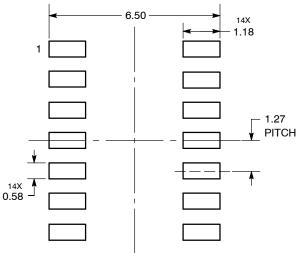

- NOTES:
  1. DIMENSIONING AND TOLERANCING PER
  - ASME Y14.5M, 1994.
    CONTROLLING DIMENSION: MILLIMETERS.
  - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT
  - MAXIMUM MATERIAL CONDITION.
    DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE

|     | MILLIN | IETERS | INC   | HES   |
|-----|--------|--------|-------|-------|
| DIM | MIN    | MAX    | MIN   | MAX   |
| Α   | 1.35   | 1.75   | 0.054 | 0.068 |
| A1  | 0.10   | 0.25   | 0.004 | 0.010 |
| АЗ  | 0.19   | 0.25   | 0.008 | 0.010 |
| b   | 0.35   | 0.49   | 0.014 | 0.019 |
| D   | 8.55   | 8.75   | 0.337 | 0.344 |
| Е   | 3.80   | 4.00   | 0.150 | 0.157 |
| e   | 1.27   | BSC    | 0.050 | BSC   |
| Н   | 5.80   | 6.20   | 0.228 | 0.244 |
| h   | 0.25   | 0.50   | 0.010 | 0.019 |
| L   | 0.40   | 1.25   | 0.016 | 0.049 |
| М   | 0 °    | 7°     | 0 °   | 7°    |

#### **GENERIC MARKING DIAGRAM\***



XXXXX = Specific Device Code Α = Assembly Location


WL = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

#### **SOLDERING FOOTPRINT\***

C SEATING PLANE

DIMENSIONS: MILLIMETERS



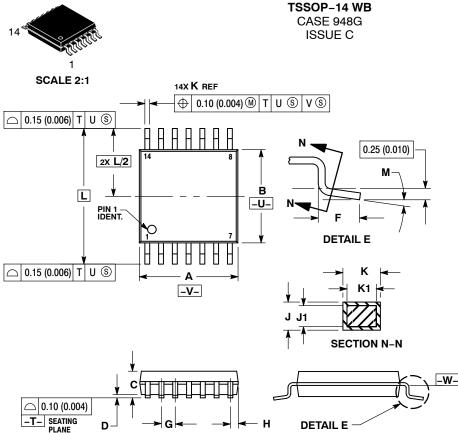
\*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### **STYLES ON PAGE 2**

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repos<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SOIC-14 NB  |                                                                                                                                                                               | PAGE 1 OF 2 |  |

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

# SOIC-14 CASE 751A-03 ISSUE L


# DATE 03 FEB 2016

| STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 2:<br>CANCELLED                                                                                                                                         | STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE                                                                | STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE | STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE | STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE |

| DOCUMENT NUMBER: | 98ASB42565B Electronic versions are uncontrolled except when accessed directly from the Doc Printed versions are uncontrolled except when stamped "CONTROLLED COPY" is |  |             |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|
| DESCRIPTION:     | SOIC-14 NB                                                                                                                                                             |  | PAGE 2 OF 2 |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.





**DATE 17 FEB 2016** 

- NOTES.

  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

  2. CONTROLLING DIMENSION: MILLIMETER.

  3. DIMENSION A DOES NOT INCLUDE MOLD
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
  DIMENSION B DOES NOT INCLUDE
- INTERLEAD FLASH OR PROTRUSION.
  INTERLEAD FLASH OR PROTRUSION SHALL
- INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

  DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

  TERMINAL NUMBERS ARE SHOWN FOR DEEEDENIC OMITY.
- REFERENCE ONLY.
  DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

|     | MILLIMETERS |      | INCHES    |       |
|-----|-------------|------|-----------|-------|
| DIM | MIN         | MAX  | MIN       | MAX   |
| Α   | 4.90        | 5.10 | 0.193     | 0.200 |
| В   | 4.30        | 4.50 | 0.169     | 0.177 |
| С   |             | 1.20 |           | 0.047 |
| D   | 0.05        | 0.15 | 0.002     | 0.006 |
| F   | 0.50        | 0.75 | 0.020     | 0.030 |
| G   | 0.65 BSC    |      | 0.026 BSC |       |
| Н   | 0.50        | 0.60 | 0.020     | 0.024 |
| J   | 0.09        | 0.20 | 0.004     | 0.008 |
| J1  | 0.09        | 0.16 | 0.004     | 0.006 |
| K   | 0.19        | 0.30 | 0.007     | 0.012 |
| K1  | 0.19        | 0.25 | 0.007     | 0.010 |
| L   | 6.40 BSC    |      | 0.252 BSC |       |
| м   | o °         | 8 °  | o °       | a °   |

# **GENERIC MARKING DIAGRAM\***



= Assembly Location

L = Wafer Lot = Year

= Work Week W

= Pb-Free Package

(Note: Microdot may be in either location)

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

# **RECOMMENDED SOLDERING FOOTPRINT\***

| -               | 7.06                    |
|-----------------|-------------------------|
| 1               |                         |
|                 |                         |
|                 |                         |
| <del></del>     |                         |
|                 | 0.65 PITCH              |
| <b>↓</b> □      |                         |
| 14X<br>0.36 126 | <del></del>             |
| 0.36 - 1.26     | DIMENSIONS: MILLIMETERS |

\*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: 98ASH70246A |             | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:                 | TSSOP-14 WB |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales