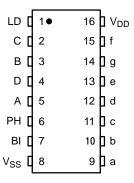


BCD-to-Seven Segment Latch/Decoder/Driver for Liquid Crystals

MC14543B

The MC14543B BCD-to-seven segment latch/decoder/driver is designed for use with liquid crystal readouts, and is constructed with complementary MOS (CMOS) enhancement mode devices. The circuit provides the functions of a 4-bit storage latch and an 8421 BCD-to-seven segment decoder and driver. The device has the capability to invert the logic levels of the output combination. The phase (Ph), blanking (BI), and latch disable (LD) inputs are used to reverse the truth table phase, blank the display, and store a BCD code, respectively. For liquid crystal (LC) readouts, a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display. The outputs of the circuit are connected directly to the segments of the LC readout. For other types of readouts, such as light-emitting diode (LED), incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet.


Applications include instrument (e.g., counter, DVM etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

Features

- Latch Storage of Code
- Blanking Input
- Readout Blanking on All Illegal Input Combinations
- Direct LED (Common Anode or Cathode) Driving Capability
- Supply Voltage Range = 3.0 V to 18 V
- Capable of Driving 2 Low-power TTL Loads, 1 Low-power Schottky TTL Load or 2 HTL Loads Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4056A (with Pin 7 Tied to V_{SS}).
- Chip Complexity: 207 FETs or 52 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.
- This Device is Pb-Free and is RoHS Compliant

PIN ASSIGNMENT

MARKING DIAGRAM

A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year

WW, W = Work Week
G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

MAXIMUM RATINGS (Voltages Referenced to VSS)

Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V_{DD}	-0.5 to +18.0	V
Input Voltage Range, All Inputs	V _{in}	-0.5 to V _{DD} +0.5	V
DC Input Current per Pin	I _{in}	±10	mA
Power Dissipation per Package (Note 1)	P _D	500	mW
Operating Temperature Range	T _A	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Maximum Continuous Output Drive Current (Source or Sink)	I _{OHmax} I _{OLmax}	10 (per Output)	mA
Maximum Continuous Output Power (Source or Sink) (Note 2)	P _{OHmax} P _{OLmax}	70 (per Output)	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Operating the device outside its recommended conditions, but still within its maximum rated limits may not cause immediate damage. However, doing so can lead to reduced performance, unpredictable behavior, and potentially shorten the device's lifespan or reliability.

1. Temperature Derating: "D/DW" Package: –7.0 mW/°C From 65 °C To 125 °C

2. P_{OHmax} = I_{OH} (V_{OH} – V_{DD}) and P_{OLmax} = I_{OL} (V_{OL} – V_{SS})

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be

taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

TRUTH TABLE

Inputs								Outputs						
LD	ВІ	Ph*	D	С	В	Α	а	b	С	d	е	f	g	Display
Х	1	0	Х	Χ	Χ	Χ	0	0	0	0	0	0	0	Blank
1	0	0	0	0	0	0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	1	1	0	0	0	0	1
1	0	0	0	0	1	0	1	1	0	1	1	0	1	2
1	0	0	0	0	1	1	1	1	1	1	0	0	1	3
1	0	0	0	1	0	0	0	1	1	0	0	1	1	4
1	0	0	0	1	0	1	1	0	1	1	0	1	1	5
1	0	0	0	1	1	0	1	0	1	1	1	1	1	6
1	0	0	0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	0	0	1	1	1	1	1	0	1	1	9
1	0	0	1	0	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	0	1	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	1	1	0	0	0	0	0	0	0	Blank
0	0	0	Х	Χ	Χ	Χ				**				**
†	†	†		†			С	Inverse of Output Combinations Above					Display as above	

- X = Don't care
- † = Above Combinations
- * = For liquid crystal readouts, apply a square wave to Ph For common cathode LED readouts, select Ph = 0 For common anode LED readouts, select Ph = 1
- ** = Depends upon the BCD code previously applied when LD = 1

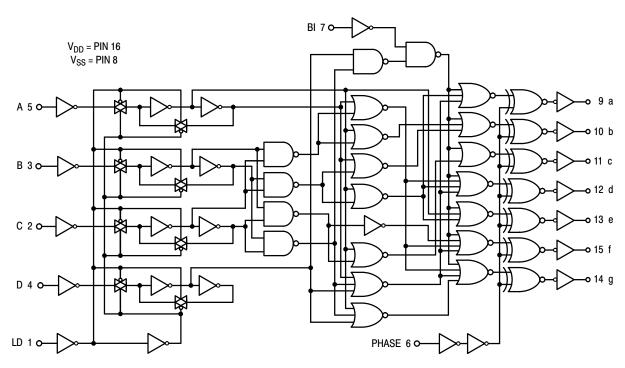
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

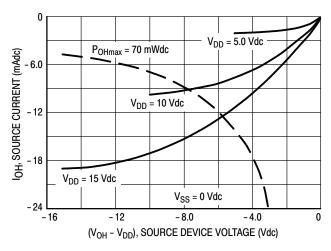
				-55	S°C	25 °C			125	S°C	
Characteristic		Sym- bol	V _{DD} Vdc	Min	Max	Min	Typ (Note 3)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95		4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
Input Voltage ($V_O = 4.5 \text{ or } 0.5 \text{ Vdc}$) ($V_O = 9.0 \text{ or } 1.0 \text{ Vdc}$) ($V_O = 13.5 \text{ or } 1.5 \text{ Vdc}$)	"0" Level	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	Vdc
Output Drive Current $(V_{OH} = 2.5 \text{ Vdc})$ $(V_{OH} = 4.6 \text{ Vdc})$ $(V_{OH} = 0.5 \text{ Vdc})$ $(V_{OH} = 0.5 \text{ Vdc})$ $(V_{OH} = 9.5 \text{ Vdc})$ $(V_{OH} = 13.5 \text{ Vdc})$	Source	ІОН	5.0 5.0 10 10	-3.0 -0.64 - -1.6 -4.2	- - - -	-2.4 -0.51 - -1.3 -3.4	-4.2 -0.88 -10.1 -2.25 -8.8	- - - -	-1.7 -0.36 - -0.9 -2.4	- - - -	mAdc
$ \begin{aligned} &(\text{V}_{\text{OL}} = 0.4 \text{ Vdc}) \\ &(\text{V}_{\text{OL}} = 0.5 \text{ Vdc}) \\ &(\text{V}_{\text{OL}} = 9.5 \text{ Vdc}) \\ &(\text{V}_{\text{OL}} = 1.5 \text{ Vdc}) \end{aligned} $	Sink	I _{OL}	5.0 10 10 15	0.64 1.6 - 4.2	- - -	0.51 1.3 - 3.4	0.88 2.25 10.1 8.8	- - - -	0.36 0.9 - 2.4	- - -	mAdc
Input Current		l _{in}	15	_	±0.1	-	±0.00001	±0.1	_	±1.0	μAdc
Input Capacitance		C _{in}	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Pa $V_{in} = 0$ or V_{DD} , $I_{out} = 0 \mu A$	ckage)	I _{DD}	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μAdc
Total Supply Current (Note (Dynamic plus Quiesce Per Package) (C _L = 50 pF on all output buffers switching)	nt,	lτ	5.0 10 15			$I_T = (3)$	1.6 μΑ/kHz) f 3.1 μΑ/kHz) f 4.7 μΑ/kHz) f	+ I _{DD}			μAdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Noise immunity specified for worst-case input combination.

```
Noise Margin for both "1" and "0" level  = 1.0 \text{ V min } @ \text{ V}_{DD} = 5.0 \text{ V} \\ 2.0 \text{ V min } @ \text{ V}_{DD} = 10 \text{ V} \\ 2.5 \text{ V min } @ \text{ V}_{DD} = 15 \text{ V}
```


- 4. To calculate total supply current at loads other than 50 pF: I_T(C_L) = I_T(50 pF) + 3.5 x 10⁻³ (C_L 50) V_{DD}f where: I_T is in μA (per package), C_L in pF, V_{DD} in V, and f in kHz is input frequency.
 5. The formulas given are for the typical characteristics only at 25 °C.


SWITCHING CHARACTERISTICS (Note 6) ($C_L = 50 \text{ pF}, T_A = 25 \text{ }^{\circ}\text{C}$)

Characteristic	Symbol	V_{DD}	Min	Тур	Max	Unit
Output Rise Time $t_{TLH} = (3.0 \text{ ns/pF}) \text{ C}_L + 30 \text{ ns} \\ t_{TLH} = (1.5 \text{ ns/pF}) \text{ C}_L + 15 \text{ ns} \\ t_{TLH} = (1.1 \text{ ns/pF}) \text{ C}_L + 10 \text{ ns}$	t _{TLH}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Output Fall Time $t_{THL} = (1.5 \text{ ns/pF}) \text{ C}_{L} + 25 \text{ ns} \\ t_{THL} = (0.75 \text{ ns/pF}) \text{ C}_{L} + 12.5 \text{ ns} \\ t_{THL} = (0.55 \text{ ns/pF}) \text{ C}_{L} + 12.5 \text{ ns}$	t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Turn-Off Delay Time $t_{PLH} = (1.7 \text{ ns/pF}) \text{ C}_{L} + 520 \text{ ns}$ $t_{PLH} = (0.66 \text{ ns/pF}) \text{ C}_{L} + 217 \text{ ns}$ $t_{PLH} = (0.5 \text{ ns/pF}) \text{ C}_{L} + 160 \text{ ns}$	t _{PLH}	5.0 10 15	- - -	605 250 185	1210 500 370	ns
Turn-On Delay Time $t_{PHL} = (1.7 \text{ ns/pF}) \text{ C}_{L} + 420 \text{ ns} \\ t_{PHL} = (0.66 \text{ ns/pF}) \text{ C}_{L} + 172 \text{ ns} \\ t_{PHL} = (0.5 \text{ ns/pF}) \text{ C}_{L} + 130 \text{ ns} \\ \end{cases}$	t _{PHL}	5.0 10 15	- - -	505 205 155	1650 660 495	ns
Setup Time	t _{su}	5.0 10 15	350 450 500	- - -	- - -	ns
Hold Time	t _h	5.0 10 15	40 30 20	- - -	- - -	ns
Latch Disable Pulse Width (Strobing Data)	t _{WH}	5.0 10 15	250 100 80	125 50 40	- - -	ns

^{6.} The formulas given are for the typical characteristics only.

LOGIC DIAGRAM

Figure 1. Typical Output Source Characteristics

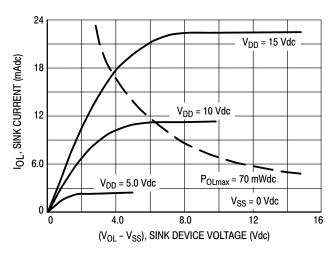
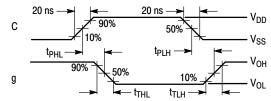
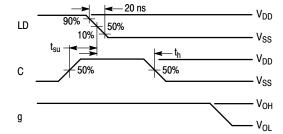
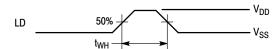




Figure 2. Typical Output Sink Characteristics


(a) Inputs D, Ph, and BI low, and Inputs A, B, and LD high.

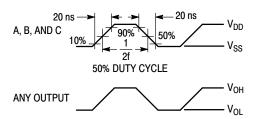
(b) Inputs D, Ph, and BI low, and Inputs A and B high.

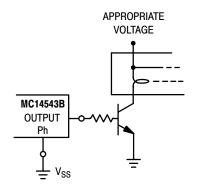
(c) Data DCBA strobed into latches

Figure 4. Dynamic Signal Waveforms

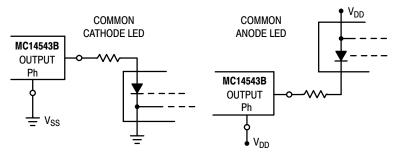
Inputs BI and Ph low, and Inputs D and LD high. f in respect to a system clock.

All outputs connected to respective C_L loads.



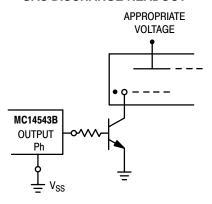

Figure 3. Dynamic Power Dissipation Signal Waveforms

CONNECTIONS TO VARIOUS DISPLAY READOUTS


LIQUID CRYSTAL (LC) READOUT

ONE OF SEVEN SEGMENTS OUTPUT Ph COMMON BACKPLANE (V_{SS} TO V_{DD})

INCANDESCENT READOUT



LIGHT EMITTING DIODE (LED) READOUT

Bipolar transistors may be added for gain (for $V_{DD} \le 10 \text{ V}$ or $I_{out} \ge 10 \text{ mA}$).

GAS DISCHARGE READOUT

CONNECTIONS TO SEGMENTS

$$e^{\int \frac{a}{g} \int_{c}^{b} b}$$

$$V_{DD} = PIN 16$$

 $V_{SS} = PIN 8$

ORDERING INFORMATION

Device	Package	Shipping [†]		
MC14543BDG	SOIC-16 (Pb-Free)	48 Units / Rail		
MC14543BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel		
NLV14543BDR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel		

For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging

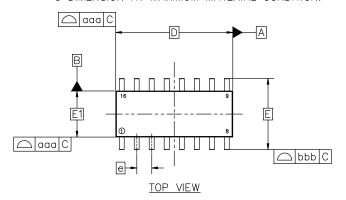
Specifications Brochure, BRD8011/D.

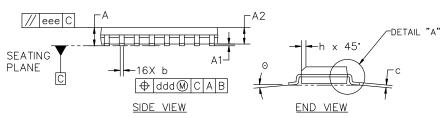
NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

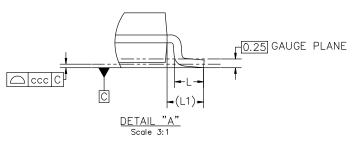
REVISION HISTORY

Revision	Description of Changes	Date
11	Rebranded the Data Sheet to onsemi format.	10/6/2025

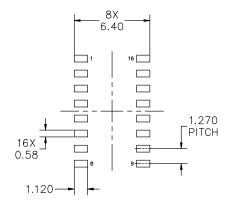
This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.




SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M


DATE 18 OCT 2024

NOTES:

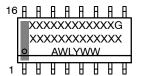

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
- 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
- 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS							
DIM	MIN	NOM	MAX				
А	1.35	1.55	1.75				
A1	0.10	0.18	0.25				
A2	1.25	1.37	1.50				
b	0.35	0.42	0.49				
С	0.19	0.22	0.25				
D	9.90 BSC						
E	6.00 BSC						
E1	3.90 BSC						
е	1.27 BSC						
h	0.25	0.25 0.50					
L	0.40	0.83	1.25				
L1		1.05 REF					
Θ	0.		7*				
TOLERAN	TOLERANCE OF FORM AND POSITION						
aaa	0.10						
bbb	0.20						
ссс	0.10						
ddd		0.25					
eee		0.10					

RECOMMENDED MOUNTING FOOTPRINT

*FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING DETAILS,
PLEASE DOWNLOAD THE onsemi SOLDERING
AND MOUNTING TECHNIQUES REFERENCE
MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	.27P	PAGE 1 OF 2			


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.37 1.27P CASE 751B

ISSUE M

DATE 18 OCT 2024

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

A = Assembly Location
WL = Wafer Lot

Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:		STYLE 3:	S	TYLE 4:	
	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE #1
	BASE	2.	ANODE	2.	BASE. #1	2.	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER. #1	3.	
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	
	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	
13.	BASE	13.		13.	COLLECTOR, #4	13.	BASE, #2
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE #1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	DRAIN, #2	3.	CATHODE	3.	COMMON DRAIN (OUTPUT)		
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH		
5.	DRAIN, #3	5.		5.	COMMON DRAIN (OUTPUT)		
6.	DRAIN, #3	6.		6.	COMMON DRAIN (OUTPUT)		
7.	DRAIN, #4		CATHODE	7.	COMMON DRAIN (OUTPUT)		
8.	DRAIN, #4		CATHODE	8.	SOURCE P-CH		
9.	GATE, #4		ANODE	9.	SOURCE P-CH		
10.	SOURCE, #4	10	ANODE	10.	COMMON DRAIN (OUTPUT)		
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPUT)		
12.	GATE, #3 SOURCE, #3	11. 12.	ANODE ANODE	11. 12.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
12. 13.	GATE, #3 SOURCE, #3 GATE, #2	11. 12. 13.	ANODE ANODE ANODE	11. 12. 13.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH		
12. 13. 14.	GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2	11. 12. 13. 14.	ANODE ANODE ANODE ANODE	11. 12. 13. 14.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT)		
12. 13. 14. 15.	GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2 GATE, #1	11. 12. 13. 14. 15.	ANODE ANODE ANODE ANODE ANODE	11. 12. 13. 14. 15.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
12. 13. 14.	GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2	11. 12. 13. 14.	ANODE ANODE ANODE ANODE	11. 12. 13. 14.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT)		

DOCUMENT NUMBER:	98ASB42566B	98ASB42566B Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	SOIC-16 9.90X3.90X1.37 1.27P			

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales