Switch-mode Power Rectifier

45 V, 20 A

MBR20L45CTG, MBRF20L45CTG

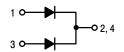
Features and Benefits

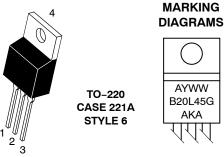
- Low Forward Voltage
- Low Power Loss/High Efficiency
- High Surge Capacity
- 150°C Operating Junction Temperature
- 20 A Total (10 A Per Diode Leg)
- Guard-Ring for Stress Protection

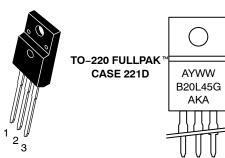
Applications

- Power Supply Output Rectification
- Power Management
- Instrumentation

Mechanical Characteristics:


- Case: Epoxy, Molded
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight (Approximately): 1.9 Grams
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 Units Per Plastic Tube
- These Devices are Pb-Free and are RoHS Compliant*




ON Semiconductor®

www.onsemi.com

DUAL SCHOTTKY BARRIER RECTIFIERS 20 AMPERES, 45 VOLTS

B20L45 = Device Code A = Assembly Location

Y = Year
WW = Work Week
AKA = Polarity Designator
G = Pb-Free Device

ORDERING INFORMATION

Device	Package	Shipping
MBR20L45CTG	TO-220 (Pb-Free)	50 Units/Rail
MBRF20L45CTG	TO-220FP (Pb-Free)	50 Units/Rail

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS (Per Diode Leg)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
Average Rectified Forward Current (Rated V_R) $T_C = 141$ °C	I _{F(AV)}	10	Α
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz)	I _{FRM}	20	А
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	180	А
Operating Junction Temperature (Note 1)	TJ	-55 to +150	°C
Storage Temperature	T _{stg}	-55 to +175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	10,000	V/μs
ESD Ratings: Machine Model = C Human Body Model = 3B		> 400 > 8000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic		Symbol	Value	Unit
Maximum Thermal Resistance				°C/W
(MBR20L45CTG)	Junction-to-Case	$R_{ heta JC}$	1.9	
	Junction-to-Ambient	$R_{ hetaJA}$	45	
(MBRF20L45CTG)	Junction-to-Case	$R_{ heta JC}$	2.2	

ELECTRICAL CHARACTERISTICS (Per Diode Leg)

Characteristic	Symbol	Value	Unit
Maximum Instantaneous Forward Voltage (Note 2) $ \begin{aligned} &(I_F=10 \text{ A, } T_C=25^\circ\text{C})\\ &(I_F=10 \text{ A, } T_C=125^\circ\text{C})\\ &(I_F=20 \text{ A, } T_C=25^\circ\text{C})\\ &(I_F=20 \text{ A, } T_C=125^\circ\text{C}) \end{aligned} $	VF	0.50 0.47 0.63 0.62	V
Maximum Instantaneous Reverse Current (Note 2) (Rated DC Voltage, $T_C = 25^{\circ}C$) (Rated DC Voltage, $T_C = 125^{\circ}C$)	i _R	0.5 170	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{1.} The heat generated must be less than the thermal conductivity from Junction–to–Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

^{2.} Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤2.0%.

TYPICAL CHARACTERISTICS

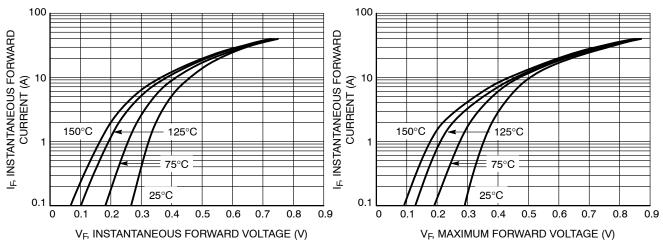
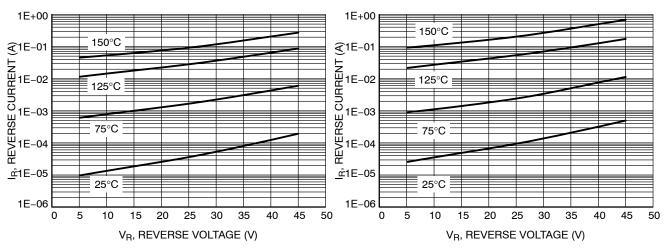



Figure 1. Typical Forward Voltage

Figure 2. Maximum Forward Voltage

Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

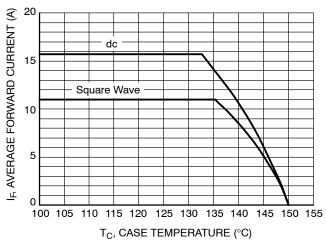


Figure 5. Current Derating

TYPICAL CHARACTERISTICS

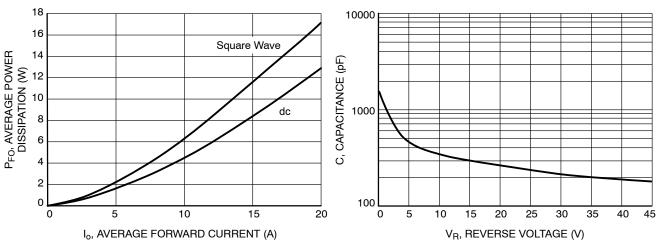


Figure 6. Forward Power Dissipation

Figure 7. Typical Capacitance

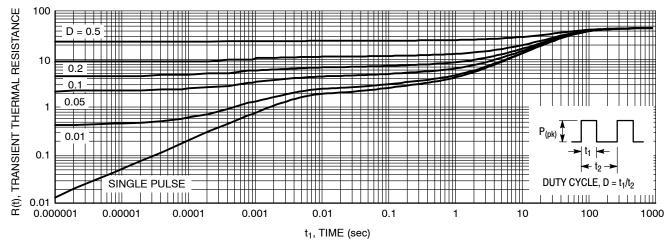


Figure 8. Thermal Response Junction-to-Ambient for MBR20L45CTG

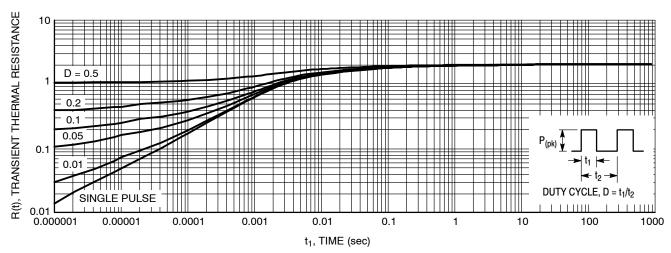


Figure 9. Thermal Response Junction-to-Case for MBR20L45CTG

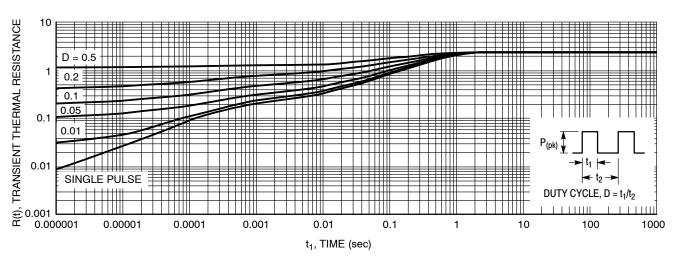
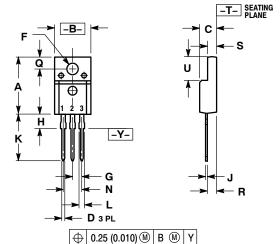


Figure 10. Thermal Response Junction-to-Case for MBRF20L45CTG

SCALE 1:1


TO-220 FULLPAK CASE 221D-03 ISSUE K

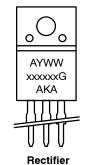
DATE 27 FEB 2009

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH
- 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.617	0.635	15.67	16.12
В	0.392	0.419	9.96	10.63
С	0.177	0.193	4.50	4.90
D	0.024	0.039	0.60	1.00
F	0.116	0.129	2.95	3.28
G	0.100 BSC		2.54 BSC	
Н	0.118	0.135	3.00	3.43
J	0.018	0.025	0.45	0.63
K	0.503	0.541	12.78	13.73
L	0.048	0.058	1.23	1.47
N	0.200 BSC		5.08 BSC	
Q	0.122	0.138	3.10	3.50
R	0.099	0.117	2.51	2.96
S	0.092	0.113	2.34	2.87
U	0.239	0.271	6.06	6.88

MARKING DIAGRAMS

CATHODE
 ANODE


STYLE 1: PIN 1. GATE STYLE 2: PIN 1. BASE STYLE 3: PIN 1. ANODE 2. COLLECTOR 3. EMITTER 2. DRAIN 2. 3. SOURCE STYLE 6: PIN 1. MT 1 2. MT 2 3. GATE STYLE 4: PIN 1. CATHODE

STYLE 5: PIN 1. CATHODE 2. ANODE 3. GATE ANODE 3. CATHODE

O xxxxxxG **AYWW**

Bipolar xxxxxx = Specific Device Code G = Pb-Free Package

Α = Assembly Location Υ = Year = Work Week WW

= Assembly Location

= Polarity Designator

Υ = Year = Work Week WW XXXXXX = Device Code = Pb-Free Package G

AKA

DOCUMENT NUMBER:	98ASB42514B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220 FULLPAK		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales