**Voltage Regulator - Low Power Low, Dropout 100 mA**

**LP2950, LP2951, NCV2951**

The LP2950 and LP2951 are micropower voltage regulators that are specifically designed to maintain proper regulation with an extremely low input–to–output voltage differential. These devices feature a very low quiescent bias current of 75 μA and are capable of supplying output currents in excess of 100 mA. Internal current and thermal limiting protection is provided.

The LP2951 has three additional features. The first is the Error Output that can be used to signal external circuitry of an out of regulation condition, or as a microprocessor power–on reset. The second feature allows the output voltage to be preset to 5.0 V, 3.3 V or 3.0 V output (depending on the version) or programmed from 1.25 V to 29 V. It consists of a pinned out resistor divider along with direct access to the Error Amplifier feedback input. The third feature is a Shutdown input that allows a logic level signal to turn–off or turn–on the regulator output.

Due to the low input–to–output voltage differential and bias current specifications, these devices are ideally suited for battery powered computer, consumer, and industrial equipment where an extension of useful battery life is desirable. The LP2950 is available in the three pin case 29 and DPAK packages, and the LP2951 is available in the eight pin dual–in–line, SOIC–8 and Micro8 surface mount packages. The ‘A’ suffix devices feature an initial output voltage tolerance ±0.5%.

**Features**

- Low Quiescent Bias Current of 75 μA
- Low Input–to–Output Voltage Differential of 50 mV at 100 μA and 380 mV at 100 mA
- 5.0 V, 3.3 V or 3.0 V ±0.5% Allows Use as a Regulator or Reference
- Extremely Tight Line and Load Regulation
- Requires Only a 1.0 μF Output Capacitor for Stability
- Internal Current and Thermal Limiting
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free and RoHS Compliant

**LP2951 Additional Features**

- Error Output Signals an Out of Regulation Condition
- Output Programmable from 1.25 V to 29 V
- Logic Level Shutdown Input

(See Following Page for Device Information.)
## DEVICE INFORMATION

<table>
<thead>
<tr>
<th>Package</th>
<th>Output Voltage</th>
<th>Adjustable</th>
<th>Operating Ambient Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO−92 Suffix Z</td>
<td>3.0 V</td>
<td>LP2950CZ–3.0</td>
<td>LP2950CZ–3.3</td>
</tr>
<tr>
<td></td>
<td>3.3 V</td>
<td>LP2950ACZ–3.0</td>
<td>LP2950ACZ–3.3</td>
</tr>
<tr>
<td></td>
<td>5.0 V</td>
<td>LP2950CZ–5.0</td>
<td>LP2950ACZ–5.0</td>
</tr>
<tr>
<td>DPAK Suffix DT</td>
<td>3.0 V</td>
<td>LP2950CDT–3.0</td>
<td>LP2950CDT–3.3</td>
</tr>
<tr>
<td></td>
<td>3.3 V</td>
<td>LP2950ACDT–3.0</td>
<td>LP2950ACDT–3.3</td>
</tr>
<tr>
<td></td>
<td>5.0 V</td>
<td>LP2950CDT–5.0</td>
<td>LP2950ACDT–5.0</td>
</tr>
<tr>
<td>SOIC–8</td>
<td>–</td>
<td>NCV2951ACD–3.3R2</td>
<td>NCV2951ACDR2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NCV2951CDR2</td>
<td>NCV2951CDR2</td>
</tr>
<tr>
<td>SOIC–8 Suffix D</td>
<td>3.0 V</td>
<td>LP2951CD–3.0</td>
<td>LP2951CD–3.3</td>
</tr>
<tr>
<td></td>
<td>3.3 V</td>
<td>LP2951ACD–3.0</td>
<td>LP2951ACD–3.3</td>
</tr>
<tr>
<td></td>
<td>5.0 V</td>
<td>LP2951CD</td>
<td>LP2951ACD</td>
</tr>
<tr>
<td>Micro8 Suffix DM</td>
<td>3.0 V</td>
<td>LP2951CDM–3.0</td>
<td>LP2951CDM–3.3</td>
</tr>
<tr>
<td></td>
<td>3.3 V</td>
<td>LP2951ACDM–3.0</td>
<td>LP2951ACDM–3.3</td>
</tr>
<tr>
<td></td>
<td>5.0 V</td>
<td>LP2951CDM</td>
<td>LP2951ACDM</td>
</tr>
<tr>
<td>DIP–8 Suffix N</td>
<td>3.0 V</td>
<td>LP2951CN–3.0</td>
<td>LP2951CN–3.3</td>
</tr>
<tr>
<td></td>
<td>3.3 V</td>
<td>LP2951ACN–3.0</td>
<td>LP2951ACN–3.3</td>
</tr>
<tr>
<td></td>
<td>5.0 V</td>
<td>LP2951CN</td>
<td>LP2951ACN</td>
</tr>
</tbody>
</table>

LP2950Cx–xx / LP2951Cx–xx 1% Output Voltage Precision at TA = 25°C
LP2950ACx–xx / LP2951ACx–xx 0.5% Output Voltage Precision at TA = 25°C

---

**Figure 1. Representative Block Diagrams**
### MAXIMUM RATINGS (TA = 25°C, unless otherwise noted.)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>VCC</td>
<td>30</td>
<td>Vdc</td>
</tr>
<tr>
<td>Peak Transient Input Voltage (t &lt; 300 ms)</td>
<td>VCC</td>
<td>32</td>
<td>Vdc</td>
</tr>
</tbody>
</table>

#### Power Dissipation and Thermal Characteristics

- **Maximum Power Dissipation**
  - Case 751 (SOIC−8) D Suffix
    - Thermal Resistance, Junction−to−Ambient: \( R_{\text{JUA}} \)
    - Thermal Resistance, Junction−to−Case: \( R_{\text{JUC}} \)
  - Case 369A (DPAK) DT Suffix (Note 1)
    - Thermal Resistance, Junction−to−Ambient: \( R_{\text{JUA}} \)
    - Thermal Resistance, Junction−to−Case: \( R_{\text{JUC}} \)
  - Case 29 (TO−226AA/TO−92) Z Suffix
    - Thermal Resistance, Junction−to−Ambient: \( R_{\text{JUA}} \)
    - Thermal Resistance, Junction−to−Case: \( R_{\text{JUC}} \)
  - Case 626 N Suffix
    - Thermal Resistance, Junction−to−Ambient: \( R_{\text{JUA}} \)
    - Thermal Resistance, Junction−to−Case: \( R_{\text{JUC}} \)
  - Case 846A (Micro8) DM Suffix
    - Thermal Resistance, Junction−to−Ambient: \( R_{\text{JUA}} \)

#### Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
ELECTRICAL CHARACTERISTICS

(V_{in} = V_O + 1.0 \, V, \, I_O = 100 \, \mu A, \, C_O = 1.0 \, \mu F, \, T_A = 25^\circ \, C \, [\text{Note 3}], \, \text{unless otherwise noted.})

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage, 5.0 V Versions</td>
<td>V_O</td>
<td>4.950</td>
<td>5.000</td>
<td>5.050</td>
<td>V</td>
</tr>
</tbody>
</table>

LP2950C–5.0/LP2951C/NCV2951C*
LP2950AC–5.0/LP2951AC/NCV2951AC*

TA = −40 to +125°C

LP2950C–5.0/LP2951C/NCV2951C*
LP2950AC–5.0/LP2951AC/NCV2951AC*

V_{in} = 6.0 to 30 V, I_O = 100 \, \mu A to 100 mA, \, T_A = −40 to +125°C

LP2950C–5.0/LP2951C/NCV2951C*
LP2950AC–5.0/LP2951AC/NCV2951AC*

Output Voltage, 3.3 V Versions | V_O | 3.267 | 3.300 | 3.333 | V |

LP2950C–3.3/LP2951C–3.3
LP2950AC–3.3/LP2951AC–3.3/NCV2951AC–3.3*

TA = −40 to +125°C

LP2950C–3.3/LP2951C–3.3
LP2950AC–3.3/LP2951AC–3.3/NCV2951AC–3.3*

V_{in} = 4.3 to 30 V, I_O = 100 \, \mu A to 100 mA, \, T_A = −40 to +125°C

LP2950C–3.3/LP2951C–3.3
LP2950AC–3.3/LP2951AC–3.3/NCV2951AC–3.3*

Output Voltage, 3.0 V Versions | V_O | 2.970 | 3.000 | 3.030 | V |

LP2950C–3.0/LP2951C–3.0
LP2950AC–3.0/LP2951AC–3.0

TA = −40 to +125°C

LP2950C–3.0/LP2951C–3.0
LP2950AC–3.0/LP2951AC–3.0

V_{in} = 4.0 to 30 V, I_O = 100 \, \mu A to 100 mA, \, T_A = −40 to +125°C

LP2950C–3.0/LP2951C–3.0
LP2950AC–3.0/LP2951AC–3.0

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. The Junction–to–Ambient Thermal Resistance is determined by PCB copper area per Figure 29.
2. This device series contains ESD protection and exceeds the following tests:
   - Human Body Model (HBM), 2000 V, Class 2, JESD22 A114–C
   - Machine Model (MM), 200 V, Class B, JESD22 A115–A
   - Charged Device Model (CDM), 2000 V, Class IV, JESD22 C101–C
3. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
4. V_{O(nom)} is the part number voltage option.
5. Noise tests on the LP2951 are made with a 0.01 \, \mu F capacitor connected across Pins 7 and 1.
6. Latch–up Current Maximum Rating tested per JEDEC standard: JESD78
   - Inputs Low: passing positive current 100 mA and negative current −100 mA
   - Inputs High: passing positive current 100 mA and negative current −10 mA.

*NCV prefix is for automotive and other applications requiring site and change control.
ELECTRICAL CHARACTERISTICS (continued)

\( (V_{in} = V_O + 1.0 \, V, \, I_O = 100 \, \mu A, \, C_O = 1.0 \, \mu F, \, T_A = 25^\circ C \) [Note 9], unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Regulation ( (V_{in} = V_{O(nom)} + 1.0 , V ) to 30 ( V ) ) (Note 10)</td>
<td>Regline</td>
<td>–</td>
<td>0.08</td>
<td>0.20</td>
<td>%</td>
</tr>
<tr>
<td>Load Regulation ( (I_O = 100 , \mu A ) ) to 100 mA</td>
<td>Regload</td>
<td>–</td>
<td>0.13</td>
<td>0.20</td>
<td>%</td>
</tr>
<tr>
<td>Dropout Voltage ( I_O = 100 , \mu A )</td>
<td>( V_I - V_O )</td>
<td>–</td>
<td>30</td>
<td>80</td>
<td>mV</td>
</tr>
<tr>
<td>Dropout Supply Bias Current ( (V_{in} = V_{O(nom)} - 0.5 , V ), ( I_O = 100 , \mu A ) (Note 10)</td>
<td>ICCdropout</td>
<td>–</td>
<td>93</td>
<td>120</td>
<td>( \mu A )</td>
</tr>
<tr>
<td>Current Limit ( (V_O ) Shorted to Ground)</td>
<td>ILimit</td>
<td>–</td>
<td>220</td>
<td>300</td>
<td>mA</td>
</tr>
<tr>
<td>Thermal Regulation</td>
<td>Regthermal</td>
<td>–</td>
<td>0.05</td>
<td>0.20</td>
<td>%W</td>
</tr>
<tr>
<td>Output Noise Voltage ( (10 , Hz ) to 100 ( kHz ) ) (Note 11)</td>
<td>( V_{in} )</td>
<td>–</td>
<td>126</td>
<td>–</td>
<td>( \mu V_{rms} )</td>
</tr>
<tr>
<td>Feedback Pin Bias Current</td>
<td>IFB</td>
<td>–</td>
<td>15</td>
<td>40</td>
<td>nA</td>
</tr>
</tbody>
</table>

| Reference Voltage \( (T_A = 25^\circ C) \)                                   | \( V_{ref} \)   | 1.210| 1.235| 1.260| V    |
| Reference Voltage \( (T_A = -40 \) to +125\( ^\circ C \) \)                 | \( V_{ref} \)   | 1.220| 1.235| 1.250| V    |
| Reference Voltage \( (T_A = -40 \) to +125\( ^\circ C \) \)                 | \( V_{ref} \)   | 1.200| 1.270| 1.270| V    |

| \( V_{in} = 6.0 \, V \)                                                        | \( V_{thu} \)   | 40   | 45   | –    | mV   |
| \( V_{in} = 6.0 \, V \)                                                        | \( V_{thl} \)   | –    | 60   | 95   | mV   |
| \( V_{in} = 6.0 \, V \)                                                        | \( V_{hy} \)    | –    | 15   | –    | mV   |

| Input Logic Voltage                                                            | \( V_{shdn} \)  | 0    | –    | 0.7  | V    |
| Shutdown Pin Input Current                                                     | \( I_{shdn} \)  | 2.0  | –    | 30   | V    |
| Regulator Output Current in Shutdown Mode                                        | \( V_{shdn} \)  | 2.4  | –    | 35   | \( \mu A \) |
| \( V_{shdn} = 30 \, V \)                                                        | \( V_{shdn} \)  | 30   | –    | 450  | \( \mu A \) |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

7. The Junction-to-Ambient Thermal Resistance is determined by PCB copper area per Figure 29.
8. ESD data available upon request.
9. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
10. \( V_{O(nom)} \) is the part number voltage option.
11. Noise tests on the LP2951 are made with a 0.01 \( \mu F \) capacitor connected across Pins 7 and 1.
*NCV prefix is for automotive and other applications requiring site and change control.

www.onsemi.com
**DEFINITIONS**

**Dropout Voltage** – The input/output voltage differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output drops 100 mV below its nominal value (which is measured at 1.0 V differential), dropout voltage is affected by junction temperature, load current and minimum input supply requirements.

**Line Regulation** – The change in output voltage for a change in input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that average chip temperature is not significantly affected.

**Load Regulation** – The change in output voltage for a change in load current at constant chip temperature.

**Maximum Power Dissipation** – The maximum total device dissipation for which the regulator will operate within specifications.

**Bias Current** – Current which is used to operate the regulator chip and is not delivered to the load.

**Output Noise Voltage** – The RMS ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

**Leakage Current** – Current drawn through a bipolar transistor collector–base junction, under a specified collector voltage, when the transistor is “off”.

**Upper Threshold Voltage** – Voltage applied to the comparator input terminal, below the reference voltage which is applied to the other comparator input terminal, which causes the comparator output to change state from a logic “0” to “1”.

**Lower Threshold Voltage** – Voltage applied to the comparator input terminal, below the reference voltage which is applied to the other comparator input terminal, which causes the comparator output to change state from a logic “1” to “0”.

**Hysteresis** – The difference between Lower Threshold and Upper Threshold voltage.

![Figure 2. Quiescent Current](image1)

![Figure 3. 5.0 V Dropout Characteristics over Load](image2)

![Figure 4. Output Voltage versus Temperature](image3)

![Figure 5. 5.0 V Dropout Characteristics with RL = 50 Ω](image4)
LP2950, LP2951, NCV2951

Figure 6. Input Current

Figure 7. Dropout Voltage versus Output Current

Figure 8. Dropout Voltage versus Temperature

Figure 9. Error Comparator Output

Figure 10. Line Transient Response

Figure 11. LP2951 Enable Transient
Introduction

The LP2950/LP2951 regulators are designed with internal current limiting and thermal shutdown making them user-friendly. Typical application circuits for the LP2950 and LP2951 are shown in Figures 20 through 28.

These regulators are not internally compensated and thus require a 1.0 μF (or greater) capacitance between the LP2950/LP2951 output terminal and ground for stability. Most types of aluminum, tantalum or multilayer ceramic will perform adequately. Solid tantalums or appropriate multilayer ceramic capacitors are recommended for operation below 25°C.

At lower values of output current, less output capacitance is required for output stability. The capacitor can be reduced to 0.33 μF for currents less than 10 mA, or 0.1 μF for currents below 1.0 mA. Using the 8 pin versions at voltages less than 5.0 V operates the error amplifier at lower values of gain, so that more output capacitance is needed for stability. For the worst case operating condition of a 100 mA load at 1.23 V output (output Pin 1 connected to the feedback Pin 7) a minimum capacitance of 3.3 μF is recommended.

The LP2950 will remain stable and in regulation when operated with no output load. When setting the output voltage of the LP2951 with external resistors, the resistance values should be chosen to draw a minimum of 1.0 μA.

A bypass capacitor is recommended across the LP2950/LP2951 input to ground if more than 4 inches of wire connects the input to either a battery or power supply filter capacitor.

Input capacitance at the LP2951 Feedback Pin 7 can create a pole, causing instability if high value external resistors are used to set the output voltage. Adding a 100 pF capacitor between the Output Pin 1 and the Feedback Pin 7 and increasing the output filter capacitor to at least 3.3 μF will stabilize the feedback loop.

Error Detection Comparator

The comparator switches to a positive logic low whenever the LP2951 output voltage falls more than approximately 5.0% out of regulation. This value is the comparator’s designed-in offset voltage of 60 mV divided by the 1.235 V internal reference. As shown in the representative block diagram. This trip level remains 5.0% below normal regardless of the value of regulated output voltage. For example, the error flag trip level is 4.75 V for a normal 5.0 V regulated output, or 9.50 V for a 10 V output voltage.

Figure 2 is a timing diagram which shows the ERROR signal and the regulated output voltage as the input voltage to the LP2951 is ramped up and down. The ERROR signal becomes valid (low) at about 1.3 V input. It goes high when the input reaches about 5.0 V (Vout exceeds about 4.75 V). Since the LP2951’s dropout voltage is dependent upon the load current (refer to the curve in the Typical Performance Characteristics), the input voltage trip point will vary with load current. The output voltage trip point does not vary with load.

The error comparator output is an open collector which requires an external pullup resistor. This resistor may be returned to the output or some other voltage within the system. The resistance value should be chosen to be consistent with the 400 μA sink capability of the error comparator. A value between 100 kΩ and 1.0 MΩ is suggested. No pullup resistance is required if this output is unused.

When operated in the power down mode (V_in = 0 V), the error comparator output will go high if it has been pulled up to an external supply (the output transistor is in high impedance state). To avoid this invalid response, the error comparator output should be pulled up to V_out (see Figure 18).

Programming the Output Voltage (LP2951)

The LP2951CX may be pin-strapped for the nominal fixed output voltage using its internal voltage divider by tying Pin 1 (output) to Pin 2 (sense) and Pin 7 (feedback) to Pin 6 (5.0 V tap). Alternatively, it may be programmed for any output voltage between its 1.235 reference voltage and its 30 V maximum rating. An external pair of resistors is required, as shown in Figure 19.
The complete equation for the output voltage is:

$$V_{out} = V_{ref} \left(1 + \frac{R1}{R2}\right) + I_{FB} \frac{R1}{R1}$$

where $V_{ref}$ is the nominal 1.235 V reference voltage and $I_{FB}$ is the feedback pin bias current, nominally −20 nA. The minimum recommended load current of 1.0 mA forces an upper limit of 1.2 MΩ on the value of R2, if the regulator must work with no load. $I_{FB}$ will produce a 2% typical error in $V_{out}$ which may be eliminated at room temperature by adjusting R1. For better accuracy, choosing $R2 = 100$ kΩ reduces this error to 0.17% while increasing the resistor program current to 12 μA. Since the LP2951 typically draws 75 μA at no load with Pin 2 open circuited, the extra 12 μA of current drawn is often a worthwhile tradeoff for eliminating the need to set output voltage in test.

**Output Noise**

In many applications it is desirable to reduce the noise present at the output. Reducing the regulator bandwidth by increasing the size of the output capacitor is the only method for reducing noise on the 3 lead LP2950. However, increasing the capacitor from 1.0 μF to 220 μF only decreases the noise from 430 μV to 160 μVrms for a 100 kHz bandwidth at the 5.0 V output.

Noise can be reduced fourfold by a bypass capacitor across R1, since it reduces the high frequency gain from 4 to unity. Pick

$$C_{Bypass} = \frac{1}{2 \pi R1 \times 200 \text{ Hz}}$$

or about 0.01 μF. When doing this, the output capacitor must be increased to 3.3 μF to maintain stability. These changes reduce the output noise from 430 μV to 126 μVrms for a 100 kHz bandwidth at 5.0 V output. With bypass capacitor added, noise no longer scales with output voltage so that improvements are more dramatic at higher output voltages.
LP2950, LP2951, NCV2951

TYPICAL APPLICATIONS

Figure 21. Lithium Ion Battery Cell Charger

Figure 22. Low Drift Current Sink

Figure 23. Latch Off When Error Flag Occurs

Figure 24. 5.0 V Regulator with 2.5 V Sleep Function
All diodes are 1N4148.

Early Warning flag on low input voltage.

Main output latches off at lower input voltages.

Battery backup on auxiliary output.

Operation: Regulator #1's V_{out} is programmed one diode drop above 5.0 V. Its error flag becomes active when V_{in} ≤ 5.7 V. When V_{in} drops below 5.3 V, the error flag of regulator #2 becomes active and via Q1 latches the main output "off". When V_{in} again exceeds 5.7 V, regulator #1 is back in regulation and the early warning signal rises, unlatching regulator #2 via D3.

Figure 25. Regulator with Early Warning and Auxiliary Output

V_{out} = 1.25V (1.0 + R1/R2)

For 5.0 V output, use internal resistors. Wire Pin 6 to 7, and wire Pin 2 to +V_{out} Bus.

Figure 26. 2.0 A Low Dropout Regulator
Figure 27. Open Circuit Detector for 4.0 to 20 mA Current Loop

Figure 28. Low Battery Disconnect

Figure 29. DPAK Thermal Resistance and Maximum Power Dissipation versus PCB Copper Length
## ORDERING INFORMATION (LP2950)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Output Voltage (Volts)</th>
<th>Tolerance (%)</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP2950CZ–3.0G</td>
<td>3.0</td>
<td>1.0</td>
<td>TO–92 (Pb–Free)</td>
<td>2000 Units / Bag</td>
</tr>
<tr>
<td>LP2950CZ–3.0RAG</td>
<td>3.0</td>
<td>1.0</td>
<td>TO–92 (Pb–Free)</td>
<td>2000 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2950ACZ–3.0G</td>
<td>3.0</td>
<td>0.5</td>
<td>TO–92 (Pb–Free)</td>
<td>2000 Units / Bag</td>
</tr>
<tr>
<td>LP2950ACZ–3.0RAG</td>
<td>3.0</td>
<td>0.5</td>
<td>TO–92 (Pb–Free)</td>
<td>2000 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2950CZ–3.3G</td>
<td>3.3</td>
<td>1.0</td>
<td>TO–92 (Pb–Free)</td>
<td>2000 Units / Bag</td>
</tr>
<tr>
<td>LP2950CZ–3.3RAG</td>
<td>3.3</td>
<td>1.0</td>
<td>TO–92 (Pb–Free)</td>
<td>2000 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2950ACZ–3.3G</td>
<td>3.3</td>
<td>0.5</td>
<td>TO–92 (Pb–Free)</td>
<td>2000 Units / Bag</td>
</tr>
<tr>
<td>LP2950ACZ–3.3RAG</td>
<td>3.3</td>
<td>0.5</td>
<td>TO–92 (Pb–Free)</td>
<td>2000 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2950CZ–5.0G</td>
<td>5.0</td>
<td>1.0</td>
<td>TO–92 (Pb–Free)</td>
<td>2000 Units / Bag</td>
</tr>
<tr>
<td>LP2950CZ–5.0RAG</td>
<td>5.0</td>
<td>1.0</td>
<td>TO–92 (Pb–Free)</td>
<td>2000 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2950CZ–5.0RPG</td>
<td>5.0</td>
<td>1.0</td>
<td>TO–92 (Pb–Free)</td>
<td>2000 Units / Ammo Pack</td>
</tr>
<tr>
<td>LP2950ACZ–5.0G</td>
<td>5.0</td>
<td>0.5</td>
<td>TO–92 (Pb–Free)</td>
<td>2000 Units / Bag</td>
</tr>
<tr>
<td>LP2950ACZ–5.0RAG</td>
<td>5.0</td>
<td>0.5</td>
<td>TO–92 (Pb–Free)</td>
<td>2000 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2950CDT–3.0RKG</td>
<td>3.0</td>
<td>1.0</td>
<td>DPAK (Pb–Free)</td>
<td>2500 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2950CDT–3.3G</td>
<td>3.3</td>
<td>1.0</td>
<td>DPAK (Pb–Free)</td>
<td>75 Units / Rail</td>
</tr>
<tr>
<td>LP2950CDT–3.3RKG</td>
<td>3.3</td>
<td>1.0</td>
<td>DPAK (Pb–Free)</td>
<td>2500 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2950ACDT–3.3RG</td>
<td>3.3</td>
<td>0.5</td>
<td>DPAK (Pb–Free)</td>
<td>2500 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2950CDT–5.0G</td>
<td>5.0</td>
<td>1.0</td>
<td>DPAK (Pb–Free)</td>
<td>75 Units / Rail</td>
</tr>
<tr>
<td>LP2950CDT–5.0RKG</td>
<td>5.0</td>
<td>1.0</td>
<td>DPAK (Pb–Free)</td>
<td>2500 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2950ACDT–5.0G</td>
<td>5.0</td>
<td>0.5</td>
<td>DPAK (Pb–Free)</td>
<td>75 Units / Rail</td>
</tr>
<tr>
<td>LP2950ACDT–5RKG</td>
<td>5.0</td>
<td>0.5</td>
<td>DPAK (Pb–Free)</td>
<td>2500 Units / Tape &amp; Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
### ORDERING INFORMATION (LP2951)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Output Voltage (Volts)</th>
<th>Tolerance (%)</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP2951CD−3.0R2G</td>
<td>3.0</td>
<td>1.0</td>
<td>SOIC−8 (Pb−Free)</td>
<td>2500 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2951ACD−3.0R2G</td>
<td>3.0</td>
<td>0.5</td>
<td>SOIC−8 (Pb−Free)</td>
<td>2500 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2951CD−3.3R2G</td>
<td>3.3</td>
<td>1.0</td>
<td>SOIC−8 (Pb−Free)</td>
<td>2500 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2951ACD−3.3G</td>
<td>3.3</td>
<td>0.5</td>
<td>SOIC−8 (Pb−Free)</td>
<td>98 Units / Rail</td>
</tr>
<tr>
<td>LP2951ACD−3.3R2G</td>
<td>3.3</td>
<td>0.5</td>
<td>SOIC−8 (Pb−Free)</td>
<td>2500 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2951CDG</td>
<td>5.0 or Adj.</td>
<td>1.0</td>
<td>SOIC−8 (Pb−Free)</td>
<td>98 Units / Rail</td>
</tr>
<tr>
<td>LP2951CDR2G</td>
<td>5.0 or Adj.</td>
<td>1.0</td>
<td>SOIC−8 (Pb−Free)</td>
<td>2500 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2951ACDG</td>
<td>5.0 or Adj.</td>
<td>0.5</td>
<td>SOIC−8 (Pb−Free)</td>
<td>98 Units / Rail</td>
</tr>
<tr>
<td>LP2951ACDR2G</td>
<td>5.0 or Adj.</td>
<td>0.5</td>
<td>SOIC−8 (Pb−Free)</td>
<td>2500 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2951ACDM−3.0RG</td>
<td>3.0</td>
<td>0.5</td>
<td>Micro8 (Pb−Free)</td>
<td>4000 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2951ACDM−3.3RG</td>
<td>3.3</td>
<td>0.5</td>
<td>Micro8 (Pb−Free)</td>
<td>4000 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2951CDMR2G</td>
<td>5.0 or Adj.</td>
<td>1.0</td>
<td>Micro8 (Pb−Free)</td>
<td>4000 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>LP2951ACDMR2G</td>
<td>5.0 or Adj.</td>
<td>0.5</td>
<td>Micro8 (Pb−Free)</td>
<td>4000 Units / Tape &amp; Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

### ORDERING INFORMATION (NCV2951)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Output Voltage (Volts)</th>
<th>Tolerance (%)</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCV2951ACD3.3R2G*</td>
<td>3.3</td>
<td>0.5</td>
<td>SOIC−8 (Pb−Free)</td>
<td>2500 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>NCV2951ACDR2G*</td>
<td>5.0 or Adj.</td>
<td>0.5</td>
<td>SOIC−8 (Pb−Free)</td>
<td>2500 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>NCV2951CDR2G*</td>
<td>5.0 or Adj.</td>
<td>1.0</td>
<td>SOIC−8 (Pb−Free)</td>
<td>2500 Units / Tape &amp; Reel</td>
</tr>
<tr>
<td>NCV2951ACDMR2G*</td>
<td>5.0 or Adj.</td>
<td>0.5</td>
<td>Micro8 (Pb−Free)</td>
<td>4000 Units / Tape &amp; Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable.
MARKING DIAGRAMS

**TO-92**
CASE 029

- 2950
  - CZ–xx
  - ALYW
- 2950A
  - CZ–xx
  - ALYW

**DPAK**
CASE 369C

- 50–yyG
  - ALYWW
- 50–yyG
  - ALYWW
- 50A–yyG
  - ALYWW
- 50AyyG
  - ALYWW

**SOIC–8**
CASE 751

- 51z
  - ALYW

**PDIP–8**
CASE 626

- 51CN
  - AWL
  - YYWWG
- 51ACN
  - AWL
  - YYWWG

**Micro8**
CASE 846A

- PAyy
  - AYW
  - C

**Notes:**
- xx = 3.0, 3.3, or 5.0
- y = 3 or 5
- yy = 30, 33, or 50
- z = A or C
- A = Assembly Location
- WL, L = Wafer Lot
- YY, Y = Year
- WW, W = Work Week
- G = Pb–Free Package
- = Pb–Free Package

(Note: Microdot may be in either location)

*This marking diagram also applies to NCV2951.*
STRAIGHT LEAD

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
4. DIMENSION b AND b2 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20.
   DIMENSION b2 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

<table>
<thead>
<tr>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>A1</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>b2</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>E2</td>
</tr>
<tr>
<td>L</td>
</tr>
</tbody>
</table>

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

www.onsemi.com
FORMED LEAD

NOTES:
2. CONTROLLING DIMENSIONS: MILLIMETERS
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
4. DIMENSION b AND b2 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION b2 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

<table>
<thead>
<tr>
<th></th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM</td>
<td>MIN.</td>
</tr>
<tr>
<td>A</td>
<td>3.75</td>
</tr>
<tr>
<td>A1</td>
<td>1.28</td>
</tr>
<tr>
<td>b</td>
<td>0.38</td>
</tr>
<tr>
<td>b2</td>
<td>0.62</td>
</tr>
<tr>
<td>c</td>
<td>0.35</td>
</tr>
<tr>
<td>D</td>
<td>7.85</td>
</tr>
<tr>
<td>E</td>
<td>4.75</td>
</tr>
<tr>
<td>E2</td>
<td>3.90</td>
</tr>
<tr>
<td>e</td>
<td>2.50</td>
</tr>
<tr>
<td>L</td>
<td>13.80</td>
</tr>
<tr>
<td>L2</td>
<td>13.20</td>
</tr>
<tr>
<td>L3</td>
<td>3.00</td>
</tr>
</tbody>
</table>

© Semiconductor Components Industries, LLC, 2019 www.onsemi.com
TO-92 (TO–226) 1 WATT
CASE 29–10

DATE 05 MAR 2021

STYLE 1:
1. PIN 1. EMITTER
2. PIN 2. BASE
3. PIN 3. COLLECTOR

STYLE 2:
1. PIN 1. BASE
2. PIN 2. EMITTER
3. PIN 3. COLLECTOR

STYLE 3:
1. PIN 1. ANODE
2. PIN 2. ANODE
3. PIN 3. CATHODE

STYLE 4:
1. PIN 1. CATHODE
2. PIN 2. ANODE
3. PIN 3. COLLECTOR

STYLE 5:
1. PIN 1. DRAIN
2. PIN 2. CATHODE
3. PIN 3. SOURCE

STYLE 6:
1. PIN 1. GATE
2. PIN 2. SOURCE & SUBSTRATE
3. PIN 3. DRAIN

STYLE 7:
1. PIN 1. SOURCE
2. PIN 2. DRAIN
3. PIN 3. GATE

STYLE 8:
1. PIN 1. DRAIN
2. PIN 2. GATE
3. PIN 3. SOURCE & SUBSTRATE

STYLE 9:
1. PIN 1. BASE
2. PIN 2. EMITTER
3. PIN 3. CATHODE

STYLE 10:
1. PIN 1. BASE
2. PIN 2. CATHODE
3. PIN 3. SOURCE & SUBSTRATE

STYLE 11:
1. PIN 1. ANODE
2. PIN 2. CATHODE & ANODE
3. PIN 3. CATHODE

STYLE 12:
1. PIN 1. MAIN TERMINAL 1
2. PIN 2. GATE
3. PIN 3. MAIN TERMINAL 2

STYLE 13:
1. PIN 1. ANODE 1
2. PIN 2. GATE
3. PIN 3. CATHODE 2

STYLE 14:
1. PIN 1. ANODE
2. PIN 2. CATHODE
3. PIN 3. NOT CONNECTED

STYLE 15:
1. PIN 1. ANODE 1
2. PIN 2. CATHODE
3. PIN 3. ANODE 2

STYLE 16:
1. PIN 1. ANODE
2. PIN 2. GATE
3. PIN 3. CATHODE

STYLE 17:
1. PIN 1. COLLECTOR
2. PIN 2. BASE
3. PIN 3. EMITTER

STYLE 18:
1. PIN 1. ANODE
2. PIN 2. CATHODE
3. PIN 3. NOT CONNECTED

STYLE 19:
1. PIN 1. GATE
2. PIN 2. ANODE
3. PIN 3. CATHODE

STYLE 20:
1. PIN 1. GATE
2. PIN 2. CATHODE
3. PIN 3. ANODE

STYLE 21:
1. PIN 1. COLLECTOR
2. PIN 2. EMITTER
3. PIN 3. BASE

STYLE 22:
1. PIN 1. SOURCE
2. PIN 2. DRAIN
3. PIN 3. GATE

STYLE 23:
1. PIN 1. GATE
2. PIN 2. SOURCE
3. PIN 3. NOT CONNECTED

STYLE 24:
1. PIN 1. GATE
2. PIN 2. SOURCE
3. PIN 3. CATHODE

STYLE 25:
1. PIN 1. MT 1
2. PIN 2. GATE
3. PIN 3. CATHODE

STYLE 26:
1. PIN 1. VCC
2. PIN 2. GROUND 2
3. PIN 3. OUTPUT

STYLE 27:
1. PIN 1. MT
2. PIN 2. SUBSTRATE
3. PIN 3. MT

STYLE 28:
1. PIN 1. CATHODE
2. PIN 2. ANODE
3. PIN 3. GATE

STYLE 29:
1. PIN 1. NOT CONNECTED
2. PIN 2. ANODE
3. PIN 3. CATHODE

STYLE 30:
1. PIN 1. NOT CONNECTED
2. PIN 2. CATHODE
3. PIN 3. SOURCE

STYLE 31:
1. PIN 1. GATE
2. PIN 2. DRAIN
3. PIN 3. SOURCE

STYLE 32:
1. PIN 1. BASE
2. PIN 2. COLLECTOR
3. PIN 3. EMITTER

STYLE 33:
1. PIN 1. RETURN
2. PIN 2. INPUT
3. PIN 3. OUTPUT

STYLE 34:
1. PIN 1. INPUT
2. PIN 2. GROUND
3. PIN 3. LOGIC

STYLE 35:
1. PIN 1. GATE
2. PIN 2. COLLECTOR
3. PIN 3. EMITTER

GENERIC MARKING DIAGRAM*

XXXXX XXXXX ALYW*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week
* = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking.
Pb-Free indicator, “G” or microdot “*”, may or may not be present. Some products may not follow the Generic Marking.
DPAK (SINGLE GAUGE)
CASE 369C
ISSUE F
DATE 21 JUL 2015

NOTES:
2. CONTROLLING DIMENSION: INCHES.
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS L3 and L4.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
7. OPTIONAL MOLD FEATURE.

STYLes:
- STYLE 1:
  1. BASE
  2. COLLECTOR
  3. EMITTER
  4. COLLECTOR

- STYLE 2:
  1. GATE
  2. DRAIN
  3. SOURCE
  4. DRAIN

- STYLE 3:
  1. ANODE
  2. CATHODE
  3. ANODE
  4. CATHODE

- STYLE 4:
  1. CATHODE
  2. ANODE
  3. CATHODE
  4. ANODE

- STYLE 5:
  1. GATE
  2. ANODE
  3. CATHODE
  4. ANODE

- STYLE 6:
  1. MT1
  2. MT2
  3. GATE
  4. COLLECTOR

- STYLE 7:
  1. GATE
  2. COLLECTOR
  3. EMITTER
  4. COLLECTOR

- STYLE 8:
  1. GATE
  2. GATE
  3. ANODE
  4. ANODE

- STYLE 9:
  1. ANODE
  2. CATHODE
  3. RESISTOR ADJUST
  4. CATHODE

- STYLE 10:
  1. CATHODE
  2. ANODE
  3. CATHODE
  4. ANODE

SOLDERING FOOTPRINT*

<table>
<thead>
<tr>
<th>DIM</th>
<th>MIN</th>
<th>MAX</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.086</td>
<td>0.094</td>
<td>2.18</td>
<td>2.38</td>
</tr>
<tr>
<td>b1</td>
<td>0.000</td>
<td>0.005</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>b2</td>
<td>0.025</td>
<td>0.035</td>
<td>0.63</td>
<td>0.89</td>
</tr>
<tr>
<td>c1</td>
<td>0.028</td>
<td>0.045</td>
<td>0.72</td>
<td>1.14</td>
</tr>
<tr>
<td>c2</td>
<td>0.180</td>
<td>0.215</td>
<td>4.57</td>
<td>5.46</td>
</tr>
<tr>
<td>D</td>
<td>0.018</td>
<td>0.024</td>
<td>0.46</td>
<td>0.61</td>
</tr>
<tr>
<td>e1</td>
<td>0.018</td>
<td>0.024</td>
<td>0.46</td>
<td>0.61</td>
</tr>
<tr>
<td>D</td>
<td>0.235</td>
<td>0.245</td>
<td>5.97</td>
<td>6.22</td>
</tr>
<tr>
<td>E</td>
<td>0.250</td>
<td>0.265</td>
<td>6.35</td>
<td>6.73</td>
</tr>
<tr>
<td>e</td>
<td>0.300</td>
<td>0.380</td>
<td>2.99</td>
<td>3.33</td>
</tr>
<tr>
<td>f</td>
<td>0.000</td>
<td>0.005</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>L</td>
<td>0.055</td>
<td>0.070</td>
<td>1.40</td>
<td>1.78</td>
</tr>
<tr>
<td>L1</td>
<td>0.020 REF</td>
<td>0.022 REF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>0.020 REF</td>
<td>0.022 REF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>0.030</td>
<td>0.050</td>
<td>0.89</td>
<td>1.27</td>
</tr>
<tr>
<td>L4</td>
<td>0.040</td>
<td>0.045</td>
<td>1.01</td>
<td>1.01</td>
</tr>
<tr>
<td>Z</td>
<td>0.155</td>
<td>0.220</td>
<td>3.93</td>
<td>5.07</td>
</tr>
</tbody>
</table>

SCALE 3:1

IC

Discrete

XXXXXX = Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

© Semiconductor Components Industries, LLC, 2018
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS

PDIP-8
CASE 626-05
ISSUE P

DATE 22 APR 2015

NOTES:
2. CONTROLLING DIMENSION: INCHES.
3. DIMENSIONS A1 AND L ARE MEASURED WITH THE PACK-
AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH
OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
NOT TO EXCEED 0.10 INCH.
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR
TO DATUM C.
6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE
LEADS UNCONSTRAINED.
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE
LEADS, WHERE THE LEADS EXIT THE BODY.
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE
CORNERS);

<table>
<thead>
<tr>
<th>DIM</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.015</td>
<td>0.38</td>
</tr>
<tr>
<td>A1</td>
<td>0.115</td>
<td>0.195</td>
</tr>
<tr>
<td>b</td>
<td>0.014</td>
<td>0.022</td>
</tr>
<tr>
<td>C</td>
<td>0.008</td>
<td>0.014</td>
</tr>
<tr>
<td>D</td>
<td>0.555</td>
<td>0.600</td>
</tr>
<tr>
<td>D1</td>
<td>0.005</td>
<td>0.13</td>
</tr>
<tr>
<td>E</td>
<td>0.300</td>
<td>0.325</td>
</tr>
<tr>
<td>eB</td>
<td>0.100</td>
<td>0.120</td>
</tr>
</tbody>
</table>

*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot " *", may or may not be present.

DOCUMENT NUMBER: 98ASB42420B
DESCRIPTION: PDIP-8

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019 www.onsemi.com
**MECHANICAL CASE OUTLINE**

**PACKAGE DIMENSIONS**

---

**SOIC–8 NB**

CASE 751–07

ISSUE AK

DATE 16 FEB 2011

NOTES:
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

---

**SOLDERING FOOTPRINT***

**GENERIC MARKING DIAGRAM***

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

---

**STYLES ON PAGE 2**

---

**DOCUMENT NUMBER:** 98ASB42564B

**DESCRIPTION:** SOIC–8 NB
**Description:**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STYLE 1:</td>
<td>EMITTER</td>
<td>COLLECTOR, DIE, #1</td>
<td>DRAIN, DIE #1</td>
<td>ANODE</td>
<td>N-C</td>
<td>SOURCE, #1</td>
<td>COMMON CATHODE</td>
<td>SOURCE</td>
</tr>
<tr>
<td>STYLE 2:</td>
<td>Collector</td>
<td>BASE, DIE #1</td>
<td>BASE, DIE #1</td>
<td>BASE, #2</td>
<td>BASE, #2</td>
<td>BASE, #2</td>
<td>BASE, #2</td>
<td>COMMON CATHODE</td>
</tr>
<tr>
<td>STYLE 3:</td>
<td>DRAIN</td>
<td>DRAIN</td>
<td>DRAIN</td>
<td>DRAIN</td>
<td>DRAIN</td>
<td>DRAIN</td>
<td>DRAIN</td>
<td>DRAIN</td>
</tr>
<tr>
<td>STYLE 4:</td>
<td>ANODE</td>
<td>COLLECTOR, DIE, #1</td>
<td>BASE</td>
<td>ANODE</td>
<td>BASE</td>
<td>ANODE</td>
<td>ANODE</td>
<td>BASE</td>
</tr>
<tr>
<td>STYLE 5:</td>
<td>DRAIN</td>
<td>DRAIN</td>
<td>DRAIN</td>
<td>DRAIN</td>
<td>DRAIN</td>
<td>DRAIN</td>
<td>DRAIN</td>
<td>DRAIN</td>
</tr>
<tr>
<td>STYLE 6:</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
</tr>
<tr>
<td>STYLE 7:</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
</tr>
<tr>
<td>STYLE 8:</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
<td>Collector</td>
</tr>
</tbody>
</table>

**Date:**

16 FEB 2011
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

Micro8
CASE 846A-02
ISSUE K

DATE 16 JUL 2020

NOTES:
2. CONTROLLING DIMENSION MILLIMETERS
3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH; PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE.
5. DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

RECOMMENDED MOUNTING FOOTPRINT

*This information is generic. Please refer to device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot "*", may or may not be present. Some products may not follow the Generic Marking.

---

DOCUMENT NUMBER: 98ASB14087C
DESCRIPTION: MICRO8

Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.