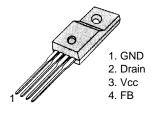
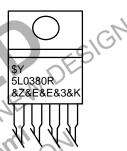
DUSEU

SPS **KA5L0380R**


The SPS product family is specially designed for an off-line SMPS with minimal external components. The SPS consist of high voltage power SENSEFET[®] and current mode PWM IC.

Included PWM controller features integrated fixed frequency oscillator, under voltage lock-out, leading edge blanking, optimized gate turn-on/turn-off driver, thermal shutdown protection, over voltage protection, and temperature compensated precision current sources for loop compensation and fault protection circuitry. Compared to discrete MOSFET and PWM controller or RCC solution, a SPS can reduce total component count, design size, weight and at the same time increase efficiency, productivity, and system reliability.

It has a basic platform well suited for cost-effective design in either a flyback converter or a forward converter.


Features

- Precision Fixed Operating Frequency (50 kHz)
- Low Start–Up Current (Typ. 100 mA)
- Pulse By Pulse Current Limiting
- Over Current Protection
- THIS DEVICE IS NOT CONTACT IN THE PRESENT AND THE • Over Voltage Protection (Min. 25 V)
- Internal Thermal Shutdown Function
- Under Voltage Lockout
- Internal High Voltage Sense FET
- Auto–Restart Mode
- This is a Pb–Free Device

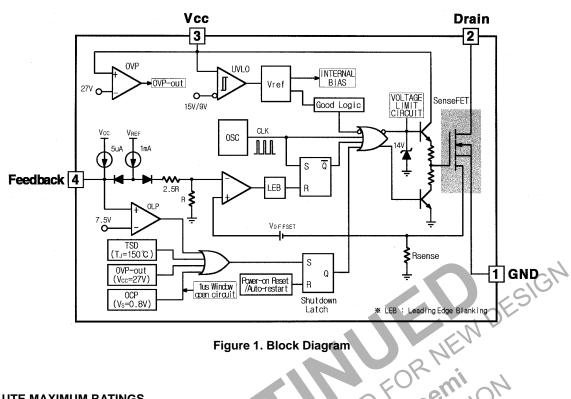
TO-220F-4L CASE 340BK

MARKING DIAGRAM

- = onsemi Logo 5L0380R Specific Device Code
 - = Assembly Plant Code
 - = Designates Space
 - = 3-Digit Date Code

= Lot Code

&Z


&E

&3

&K

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

ABSOLUTE MAXIMUM RATINGS

Figure 1. Block Diagram	NEW		
ABSOLUTE MAXIMUM RATINGS	ORNE	MC	
Rating	Symbol	Value	Unit
Drain-Source (GND) Voltage (Note 1)	V _{DSS}	800	V
Drain–Gate Voltage (R_{GS} = 1 M Ω)	V _{DGR}	800	V
Gate-Source (GND) Voltage	V _{GS}	±30	V
Drain Current Pulsed (Note 2)	I _{DM}	12	A _{DC}
Single Pulsed Avalanche Energy (Note 3)	E _{AS}	95	mJ
Avalanche Current (Note 4)	I _{AS}	-	А
Continuous Drain Current (T _C = 25°C)	۱ _D	3.0	A _{DC}
Continuous Drain Current (T _C = 100°C)	۱ _D	2.1	A _{DC}
Supply Voltage	V _{CC}	30	V
Analog Input Voltage Range	V _{FB}	–0.3 to V_{SD}	V
Total Power Dissipation	P _D (wt H/S)	35	W
	Derating	0.28	W/°C
Operating Temperature	T _{OPR}	-25 to +85	°C
Storage Temperature	T _{STG}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Tj = 25°C to 150°C

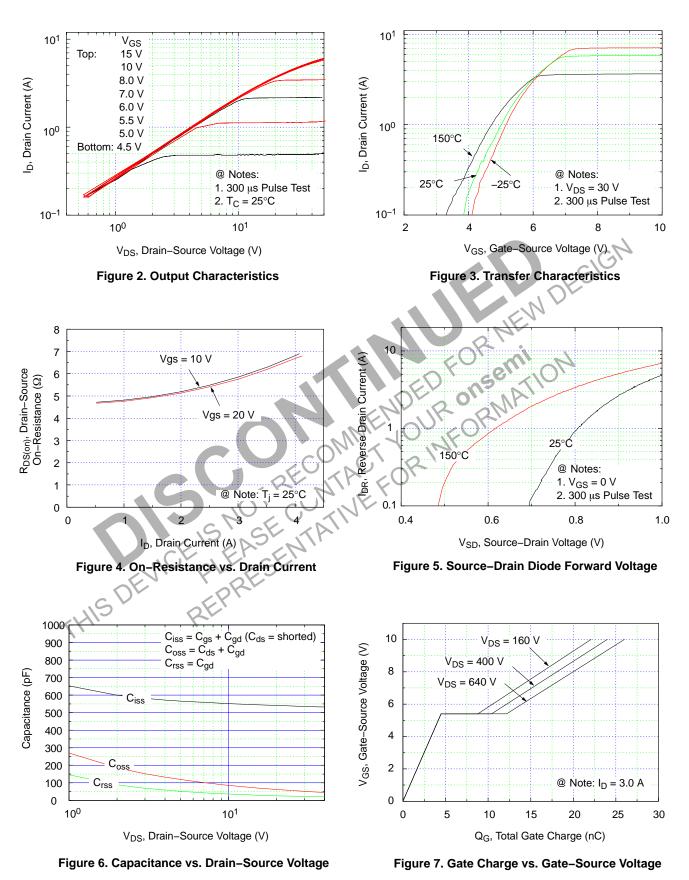
2. Repetitive rating: Pulse width limited by maximum junction temperature.

3. L = 51 mH, starting Tj = 25° C 4. L = 13 μ H, starting Tj = 25° C

ELECTRICAL CHARACTERISTICS (SFET PART) (Ta = 25°C unless otherwise noted)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0 V, I_D = 50 \mu A$	800	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = Max., Rating, V_{GS} = 0 V	-	-	250	μΑ
		V_{DS} = 0.8 Max., Rating, V_{GS} = 0 V, T _C = 125°C	-	-	1000	μΑ
Static Drain–Source On Resistance (Note 5)	R _{DS(ON)}	V_{GS} = 10 V, I _D = 0.5 A	-	4	5	Ω
Forward Transconductance (Note 5)	gfs	V _{DS} = 50 V, I _D = 0.5 A	1.5	2.5	-	S
Input Capacitance	Ciss	V_{GS} = 0 V, V_{DS} = 25 V, f = 1 MHz	-	779	-	pF
Output Capacitance	Coss		_	75.6	-	
Reverse Transfer Capacitance	Crss		_	24.9	-	
Turn Off Delay Time	td(on)	V_{DD} = 0.5 BV _{DSS} , I _D = 1.0 A	-	40		ns
Rise Time	tr	(MOSFET switching time are essentially independent	-	95	CIQ/	
Turn Off Delay Time	td(off)	of operating temperature)	-	150		
Fall Time	tf		-	60	-	
Total Gate Charge (Gate-source + Gate-drain)	Qg	$V_{GS} = 10 \text{ V}, I_D = 1.0 \text{ A}, V_{DS} = 0.5 \text{ BV}_{DSS}$		E-	34	nC
Gate-Source Charge	Qgs	(MOSFET switching time are essentially independent	<u> .</u>	7.2	-	
Gate-Drain (Miller) Charge	Qgd	of operating temperature)	- 50	12.0	_	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse test: Pulse width \leq 300 μ s, duty cycle \leq 2%. Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product


ELECTRICAL CHARACTERISTICS (CONTROL PART) (Ta = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
REFERENCE SECTION			•			
Output Voltage (Note 6)	Vref	$T_a = 25^{\circ}C$	4.80	5.00	5.20	V
Temperature Stability (Note 6, Note 7)	Vref/∆T	–25°C ≤ Ta ≤ +85°C	-	0.3	0.6	mV/°C
OSCILLATOR SECTION						
Initial Accuracy	F _{OSC}	$T_a = 25^{\circ}C$	45	50	55	kHz
Frequency Change with Temperature (Note 7)	$\Delta F / \Delta T$	–25°C ≤ Ta ≤ +85°C	-	±5	±10	%
PWM SECTION						
Maximum Duty Cycle	Dmax	-	74	77	80	%
FEEDBACK SECTION						
Feedback Source Current	I _{FB}	$T_a = 25^{\circ}C, 0 V \le Vfb \le 3 V$	0.7	0.9	1.1	mA
Shutdown Delay Current	Idelay	$T_a = 25^{\circ}C, \ 5 \ V \leq V fb \leq V_{SD}$	4	5	6	μA
OVER CURRENT PROTECTION SECTION	ON			6	S	
Over Current Protection	I _L (max)	Max. Inductor current	1.89	2.15	2.41	А
UVLO SECTION				12		
Start Threshold Voltage	Vth(H)	-	8.4	9	9.6	V
Minimum Operating Voltage	Vth(L)	After turn on	14	15	16	V
TOTAL STANDBY CURRENT SECTION		· (0)	Seit	10,		
Start Current	I _{ST}	V _{CC} = 14 V	1 AA	0.1	0.17	mA
Operating Supply Current (Control Part Only)	IOPR	V _{CC} ≤28	Sk <u>i</u>	7	12	mA
SHUTDOWN SECTION		ON TO NY				
Shutdown Feedback Voltage	V _{SD}	Vfb≥6,5 V	6.9	7.5	8.1	V
Thermal Shutdown Temperature (Tj) (Note 6)	TSD	OPWER	140	160	-	°C
Over Voltage Protection	VOVR	V _{CC} ≥ 24 V	25	27	29	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
6. These parameters, although guaranteed, are not 100% tested in production.
7. These parameters, although guaranteed, are tested in EDS (wafer test) process.

THIS

TYPICAL PERFORMANCE CHARACTERISTICS (SFET part)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

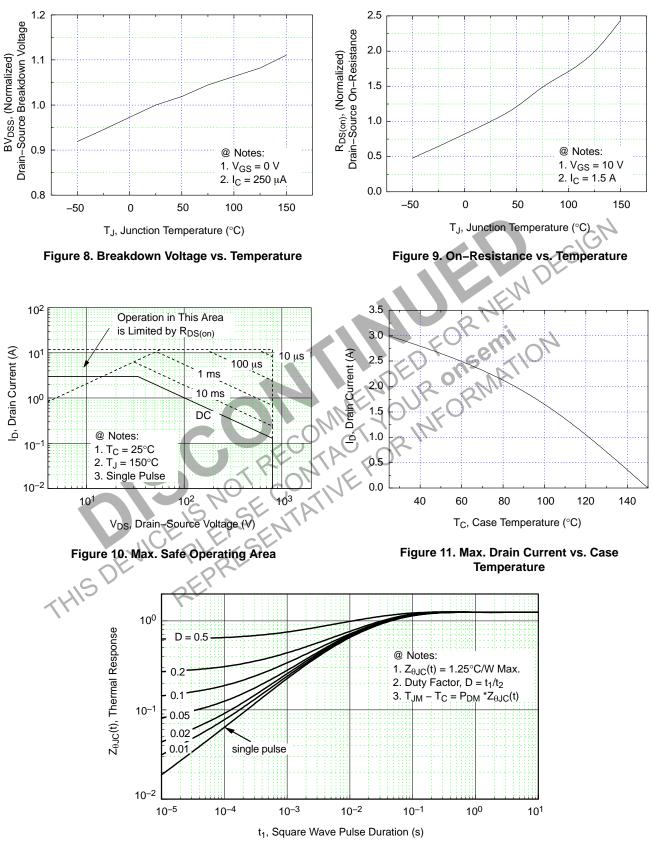


Figure 12. Thermal Response

TYPICAL PERFORMANCE CHARACTERISTICS (Control part)

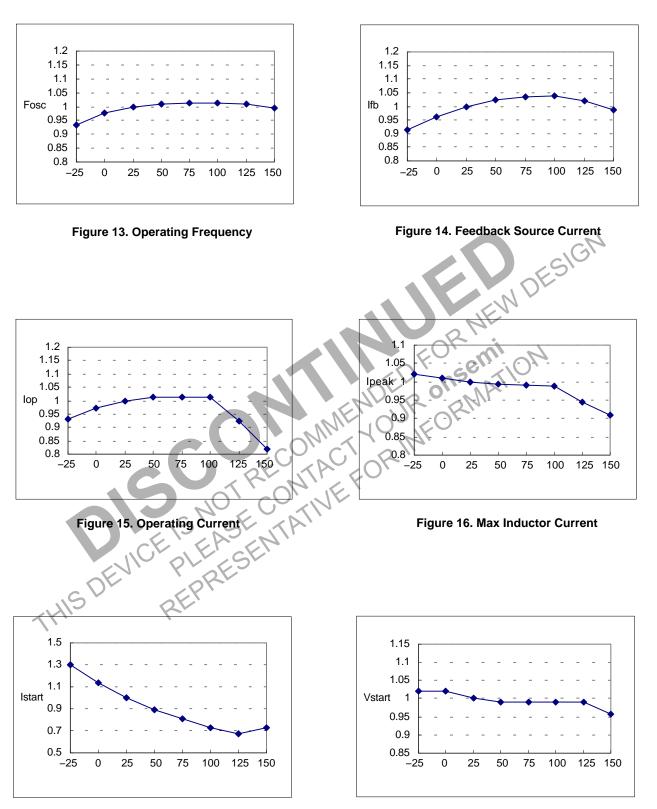


Figure 17. Start Up Current

Figure 18. Start Threshold Voltage

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

(These characteristic graphs are normalized at Ta = 25° C)

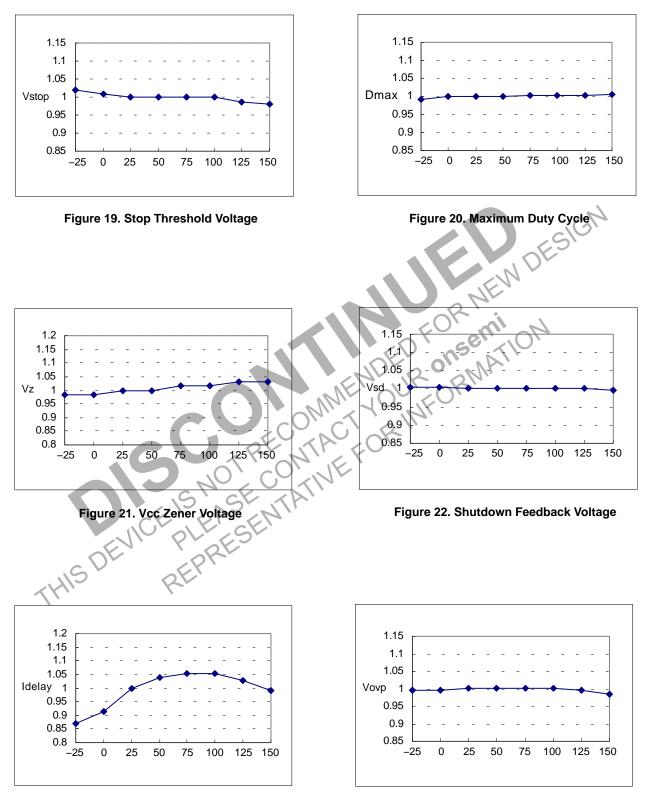
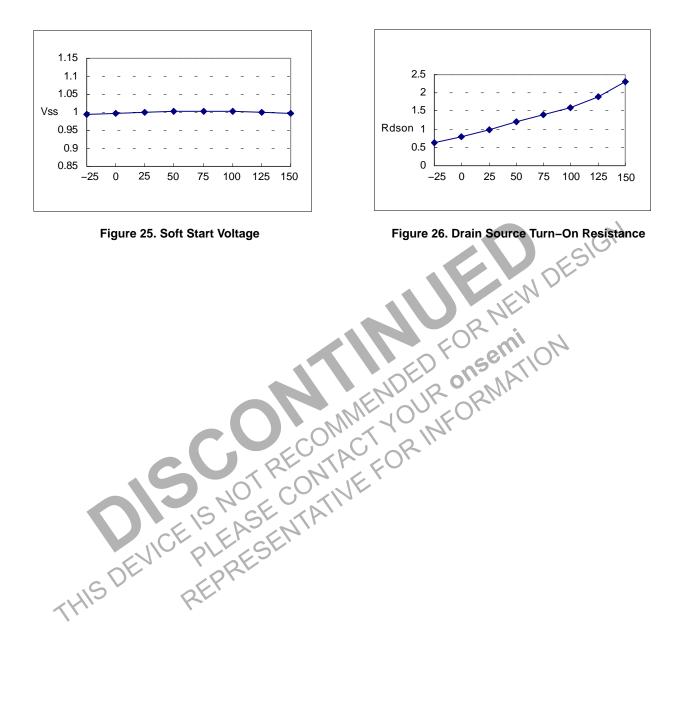
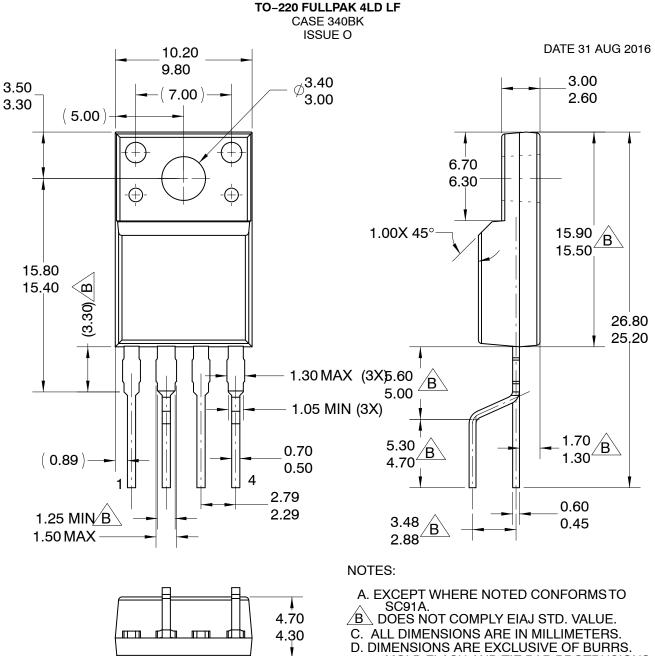



Figure 23. Shutdown Delay Current

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

(These characteristic graphs are normalized at Ta = 25° C)

ORDERING INFORMATION


Device	Operating Temperature Range	Package	Packing Method
KA5L0380R	−25 to +85°C	TO-220F-4L (Pb-Free)	Tube

SENSEFET is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

MOLD FLASH AND TIE BAR PROTRUSIONS. E. PIN 2 CONNECTS TO DAP.

DOCUMENT NUMBER:	98AON13843G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220 FULLPAK 4LD LF		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales