Programmable Shunt Regulator

KA431A, KA431L

Description
The KA431A and KA431L are three-terminal adjustable regulators with a guaranteed thermal stability over the operating temperature range. The output voltage can be set to any value between V_{REF} (approximately 2.5 V) and 36 V with two external resistors. These devices have a typical dynamic output impedance of 0.2 Ω. Active output circuitry provides a sharp turn-on characteristic, making these devices excellent replacements for Zener diodes in many applications.

Features
- Programmable Output Voltage to 36 V
- Low Dynamic Output Impedance: 0.2 Ω (Typical)
- Sink Current Capability: 1.0 to 100 mA
- Equivalent Full-Range Temperature Coefficient of 50 ppm/°C (Typical)
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range
- Low Output Noise Voltage
- Fast Turn-on Response

Figure 1. Block Diagram

ON Semiconductor
www.onsemi.com

MARKING DIAGRAM
KA431XX = Specific Device Code
A = Assembly Location
L = Wafer Lot
YW = Assembly Start Week

PIN CONNECTIONS

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{KA}</td>
<td>Cathode Voltage</td>
<td>37</td>
<td>V</td>
</tr>
<tr>
<td>I_{KA}</td>
<td>Cathode Current Range (Continuous)</td>
<td>−100 to +150</td>
<td>mA</td>
</tr>
<tr>
<td>I_{REF}</td>
<td>Reference Input Current Range</td>
<td>−0.05 to +10</td>
<td>mA</td>
</tr>
<tr>
<td>P_D</td>
<td>Power Dissipation</td>
<td>770</td>
<td>mW</td>
</tr>
<tr>
<td>R_{NJ}</td>
<td>Thermal Resistance, Junction to Ambient</td>
<td>160</td>
<td>°C/W</td>
</tr>
<tr>
<td>T_{OPR}</td>
<td>Operating Temperature Range</td>
<td>−25 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Junction Temperature</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature Range</td>
<td>−65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{KA}</td>
<td>Cathode Voltage</td>
<td>V_{REF}</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>I_{KA}</td>
<td>Cathode Current</td>
<td>1</td>
<td>100</td>
<td>mA</td>
</tr>
</tbody>
</table>

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (Values are at $T_A = 25°C$ unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>$KA431A$</th>
<th>$KA431L$</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{REF}</td>
<td>Reference Input Voltage</td>
<td>$V_{KA} = V_{REF}, I_{KA} = 10$ mA</td>
<td>2.470</td>
<td>2.495</td>
<td>2.520</td>
</tr>
<tr>
<td>$\Delta V_{REF}/\Delta T$</td>
<td>Deviation of Reference Input Voltage Over Temperature</td>
<td>$V_{KA} = V_{REF}, I_{KA} = 10$ mA, $T_{MIN} \leq T_A \leq T_{MAX}$ (Note 1)</td>
<td>−4.5</td>
<td>17.0</td>
<td>−4.5</td>
</tr>
<tr>
<td>ΔV_{KA}</td>
<td>Ratio of Change in Reference Input Voltage to the Change in Cathode Voltage</td>
<td>$I_{KA} = 10$ mA, $\Delta V_{KA} = 10$ V − V_{REF}</td>
<td>−1.0</td>
<td>−2.7</td>
<td>−1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Delta V_{KA} = 36$ V − 10 V</td>
<td>−0.5</td>
<td>−2.0</td>
<td>−0.5</td>
</tr>
<tr>
<td>I_{REF}</td>
<td>Reference Input Current</td>
<td>$I_{KA} = 10$ mA, $R_1 = 10$ kΩ, $R_2 = \infty$</td>
<td>−1.5</td>
<td>4.0</td>
<td>−1.5</td>
</tr>
<tr>
<td>$\Delta I_{REF}/\Delta T$</td>
<td>Deviation of Reference Input Current Over Full Temperature Range</td>
<td>$I_{KA} = 10$ mA, $R_1 = 10$ kΩ, $R_2 = \infty$, $T_A = $ Full Range</td>
<td>−0.4</td>
<td>1.2</td>
<td>−0.4</td>
</tr>
<tr>
<td>$I_{KA(MIN)}$</td>
<td>Minimum Cathode Current for Regulation</td>
<td>$V_{KA} = V_{REF}$</td>
<td>−0.45</td>
<td>1.00</td>
<td>−0.45</td>
</tr>
<tr>
<td>$I_{KA(OFF)}$</td>
<td>Off – Stage Cathode Current</td>
<td>$V_{KA} = 36$ V, $V_{REF} = 0$</td>
<td>−0.05</td>
<td>1.00</td>
<td>−0.05</td>
</tr>
<tr>
<td>Z_{KA}</td>
<td>Dynamic Impedance</td>
<td>$V_{KA} = V_{REF}, I_{KA} = 1$ to 100 mA, $f \geq 1.0$ kHz</td>
<td>−0.15</td>
<td>0.50</td>
<td>−0.15</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. $T_{MIN} = −25°C$, $T_{MAX} = +85°C$.

www.onsemi.com
KA431A, KA431L

TEST CIRCUIT

Figure 2. Test Circuit for $V_{KA} = V_{REF}$

Figure 3. Test Circuit for $V_{KA} \geq V_{REF}$

Figure 4. Test Circuit for $I_{KA(OFF)}$
Figure 5. Cathode Current vs. Cathode Voltage

Figure 6. Cathode Current vs. Cathode Voltage

Figure 7. Change in Reference Input Voltage vs. Cathode Voltage

Figure 8. Dynamic Impedance Frequency

Figure 9. Small Signal Voltage Amplification vs. Frequency

Figure 10. Pulse Response
Figure 11. Stability Boundary Conditions
KA431A, KA431L

TYPICAL APPLICATION

Figure 12. Shunt Regulator

\[V_O = \left(1 + \frac{R_1}{R_2}\right) \cdot V_{REF} \]

Figure 13. Output Control for Three-Terminal Fixed Regulator

\[V_O = V_{REF} \cdot \left(1 + \frac{R_1}{R_2}\right) \]

Figure 14. High-Current Shunt Regulator

\[V_O = \left(1 + \frac{R_1}{R_2}\right) \cdot V_{REF} \]

Figure 15. Current Limit or Current Source

\[I_O = \frac{V_{REF}}{R_{CL}} \]

Figure 16. Constant-Current Sink

\[I_O = \frac{V_{REF}}{R_S} \]

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Operating Temperature Range</th>
<th>Output Voltage Tolerance</th>
<th>Tom Mark</th>
<th>Package</th>
<th>Packing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>KA431AZBU</td>
<td>−25 ~ +85°C</td>
<td>1%</td>
<td>KA431AZ</td>
<td>TO−92</td>
<td>Bulk</td>
</tr>
<tr>
<td>KA431AZTA</td>
<td></td>
<td>1%</td>
<td>KA431AZ</td>
<td>TO−92</td>
<td>Ammo</td>
</tr>
<tr>
<td>KA431LZTA</td>
<td></td>
<td>0.5%</td>
<td>KA431LZ</td>
<td>TO−92</td>
<td>Ammo</td>
</tr>
</tbody>
</table>
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS

TO-92 3 4.825x4.76
CASE 135AN
ISSUE O

DATE 31 JUL 2016

NOTES: UNLESS OTHERWISE SPECIFIED
A) DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DRAWING CONFORMS TO ASME Y14.5M–2009.

DOCUMENT NUMBER: 98AON13880G
DESCRIPTION: TO-92 3 4.825X4.76

Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

ON Semiconductor and ™ are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
TO-92 3 4.83X4.76 LEADFORMED
CASE 135AR
ISSUE 0

DATE 30 SEP 2016

NOTES: UNLESS OTHERWISE SPECIFIED
A) DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DRAWING CONFORMS TO ASME Y14.5M-1994

Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.