ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

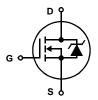
Data Sheet

October 2013

N-Channel UltraFET Power MOSFET 55 V, 20 A, 26 $m\Omega$

These N-Channel power MOSFETs are manufactured using the innovative UltraFET process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and battery-operated products.

Formerly developmental type TA75329.


Ordering Information

PART NUMBER	PACKAGE	BRAND		
HUF75329D3ST	TO-252AA	75329D		

Features

- 20A, 55V
- · Simulation Models
 - Temperature Compensated PSPICE® and SABER™ Models
 - SPICE and SABER Thermal Impedance Models Available on the WEB at: www.onsemi.com
- · Peak Current vs Pulse Width Curve
- · UIS Rating Curve
- · Related Literature
 - TB334, "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

JEDEC TO-252AA

HUF75329D3S

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

		UNITS
Drain to Source Voltage (Note 1)V _{DSS}	55	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1) V_{DGR}	55	V
Gate to Source Voltage	±20	V
Drain Current		
Continuous (Figure 2)	20	Α
Pulsed Drain Current	Figure 4	
Pulsed Avalanche Rating E _{AS}	Figure 6	
Power Dissipation P _D	128	W
Derate Above 25 ^o C	0.86	W/oC
Operating and Storage Temperature	-55 to 175	°C
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10sT _L	300	оС
Package Body for 10s, See Techbrief 334	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST	CONDITIONS	MIN	TYP	MAX	UNITS
OFF STATE SPECIFICATIONS							
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V (Figure 11)		55	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	I_{DSS} $V_{DS} = 50V, V_{GS} = 0V$		-	-	1	μΑ
		V _{DS} = 45V, V _{GS} =	$V_{DS} = 45V, V_{GS} = 0V, T_{C} = 150^{\circ}C$		-	250	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V		-	-	±100	nA
ON STATE SPECIFICATIONS				<u>'</u>		•	
Gate to Source Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 2$	50μA (Figure 10)	2	-	4	V
Drain to Source On Resistance	r _{DS(ON)}	I _D = 20A, V _{GS} = 10V (Figure 9)		-	0.022	0.026	Ω
THERMAL SPECIFICATIONS				<u>'</u>		•	
Thermal Resistance Junction to Case	$R_{ heta JC}$	(Figure 3)		-	-	1.17	oC/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	TO-252		-	-	100	oC/W
SWITCHING SPECIFICATIONS (V _{GS} = 10)	/)			•			l
Turn-On Time	ton	V _{DD} = 30V, I _D ≅ 20	-	-	60	ns	
Turn-On Delay Time	t _d (ON)	$R_{L} = 1.5\Omega$, $V_{GS} = 10V$, $R_{GS} = 9.1\Omega$		-	7	-	ns
Rise Time	t _r			-	30	-	ns
Turn-Off Delay Time	t _{d(OFF)}			-	10	-	ns
Fall Time	t _f			-	33	-	ns
Turn-Off Time	tOFF			-	-	65	ns
GATE CHARGE SPECIFICATIONS	1			•			l
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0V to 20V	$V_{DD} = 30V,$ $I_{D} \cong 20A,$ $R_{L} = 1.5\Omega$ $I_{g(REF)} = 1.0\text{mA}$ (Figure 13)	-	50	65	nC
Gate Charge at 10V	Q _{g(10)}	V _{GS} = 0V to 10V		-	32	40	nC
Threshold Gate Charge	Q _{g(TH)}	$V_{GS} = 0V \text{ to } 2V$		-	2.0	2.5	nC
Gate to Source Gate Charge	Q _{gs}			-	5	-	nC
Reverse Transfer Capacitance	Q _{gd}			-	13	-	nC

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS		
CAPACITANCE SPECIFICATIONS								
Input Capacitance	C _{ISS}	$V_{DS} = 25V, V_{GS} = 0V,$	-	1060	-	pF		
Output Capacitance	C _{OSS}	f = 1MHz (Figure 12)	-	405	-	pF		
Reverse Transfer Capacitance	C _{RSS}		-	95	-	pF		

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 20A	-	-	1.25	V
Reverse Recovery Time	t _{rr}	$I_{SD} = 20A$, $dI_{SD}/dt = 100A/\mu s$	-	-	68	ns
Reverse Recovered Charge	Q _{RR}	$I_{SD} = 20A$, $dI_{SD}/dt = 100A/\mu s$	-	-	120	nC

Typical Performance Curves

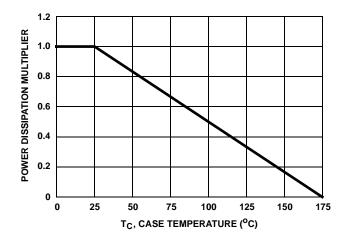


FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

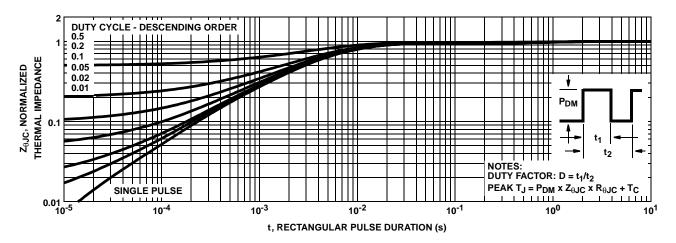


FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

Typical Performance Curves (Continued)

FIGURE 4. PEAK CURRENT CAPABILITY

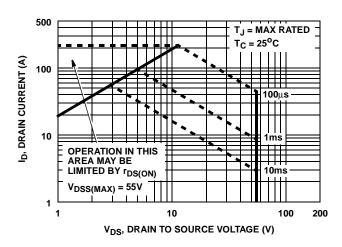


FIGURE 5. FORWARD BIAS SAFE OPERATING AREA

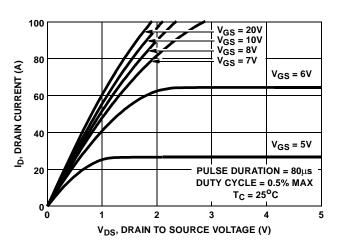
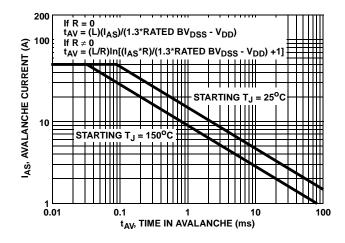



FIGURE 7. SATURATION CHARACTERISTICS

NOTE: Refer to ON Semiconductor Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

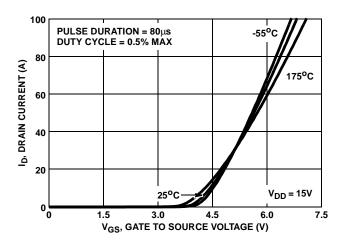


FIGURE 8. TRANSFER CHARACTERISTICS

Typical Performance Curves (Continued)

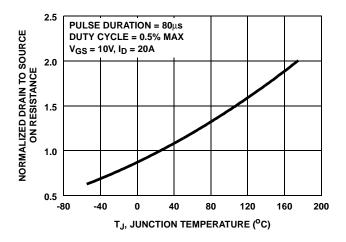


FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

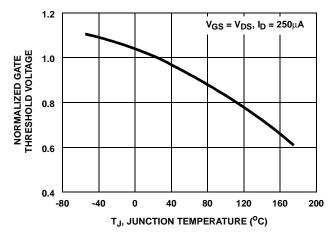


FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

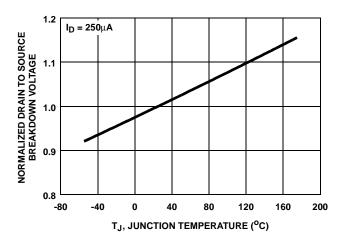


FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

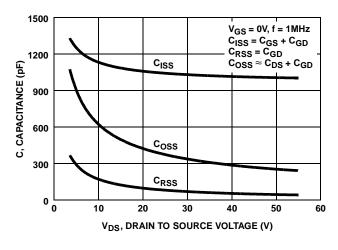
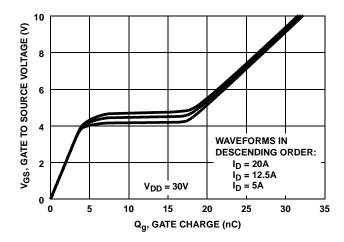



FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

NOTE: Refer to ON Semiconductor Application Notes AN7254 and AN7260.

FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT

Test Circuits and Waveforms

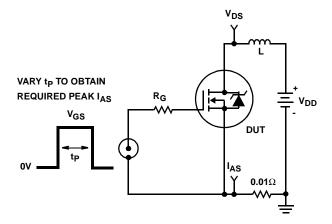


FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT

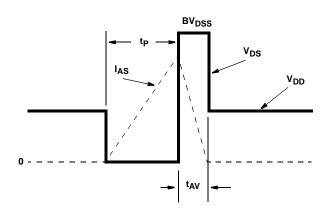


FIGURE 15. UNCLAMPED ENERGY WAVEFORMS

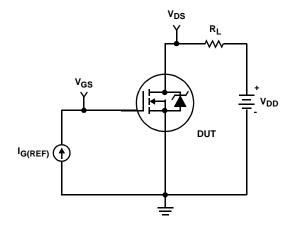


FIGURE 16. GATE CHARGE TEST CIRCUIT

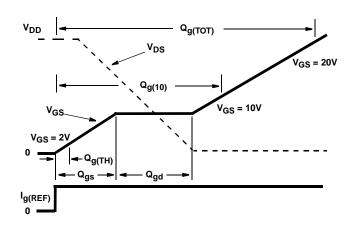


FIGURE 17. GATE CHARGE WAVEFORM

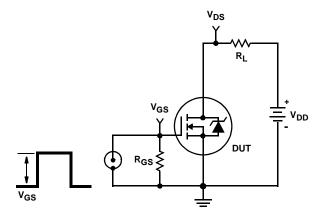


FIGURE 18. SWITCHING TIME TEST CIRCUIT

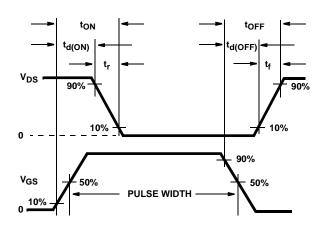


FIGURE 19. RESISTIVE SWITCHING WAVEFORMS

PSPICE Electrical Model

.SUBCKT HUF75329D 2 1 3 : rev 6/19/97 CA 12 8 1.72e-9 CB 15 14 1.52e-9 LDRAIN CIN 6 8 9.61e-10 **DPLCAP** DRAIN -02 10 RLDRAIN **DBODY 7 5 DBODYMOD** ≶RSLC1 DBREAK 5 11 DBREAKMOD **DBREAK** 51 **DPLCAP 10 5 DPLCAPMOD** RSLC2 ≥ **ESLC** 11 FBRFAK 11 7 17 18 58 13 . 50 EDS 14 8 5 8 1 **▲** DBODY EGS 13 8 6 8 1 ≻RDRAIN 6 8 **EBREAK ESG** ESG 6 10 6 8 1 **EVTHRES** EVTHRES 6 21 19 8 1 16 21 EVTEMP 20 6 18 22 1 19 8 **MWEAK EVTEMP LGATE RGATE** GATE 18 22 i MMED IT 8 17 1 20 MSTRO **RLGATE** LDRAIN 2 5 1e-9 **LSOURCE** LGATE 1 9 2.86e-9 CIN SOURCE 8 \sim LSOURCE 3 7 2.69e-9 **RSOURCE** MMED 16 6 8 8 MMEDMOD RLSOURCE MSTRO 16 6 8 8 MSTROMOD S1A S2A MWEAK 16 21 8 8 MWEAKMOD **RBREAK** 12 13 8 15 17 18 13 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1e-3 S1B **RVTEMP** S₂B RGATE 9 20 1.52 13 CB 19 RLDRAIN 2510 CA IT 14 RI GATE 1 9 26.9 VRAT **RLSOURCE 3 7 28.6** 8 <u>5</u> **EGS EDS** RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 8 RSOURCE 8 7 RSOURCEMOD 13.85e-3 **RVTHRES** RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*135),3.5))} .MODEL DBODYMOD D (IS = 7.50e-13 RS = 5.05e-3 TRS1 = 2.21e-3 TRS2 = 1.02e-6 CJO = 1.51e-9 TT = 4.05e-8 M = 0.5) .MODEL DBREAKMOD D (RS = 2.14e- 1TRS1 = 9.62e- 4TRS2 = 1.23e-6) .MODEL DPLCAPMOD D (CJO = 13.5e-1 0IS = 1e-3 0N = 10 M = 0.85) .MODEL MMEDMOD NMOS (VTO = 3.25 KP = 2.50 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.52) .MODEL MSTROMOD NMOS (VTO = 3.80 KP = 70.0 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.91 KP = 0.06 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 15.2 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.05e- 3TC2 = 1.94e-7) .MODEL RDRAINMOD RES (TC1 = 8.04e-2 TC2 = 1.37e-4) .MODEL RSLCMOD RES (TC1 = 4.83e-3 TC2 = 1.16e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC = -3.43e-3 TC2 = -1.63e-5) .MODEL RVTEMPMOD RES (TC1 = -1.35e- 3TC2 = 1.16e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -7.90 VOFF= -4.90) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.90 VOFF= -7.90) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.50 VOFF= 2.50) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.50 VOFF= -0.50) .ENDS

NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

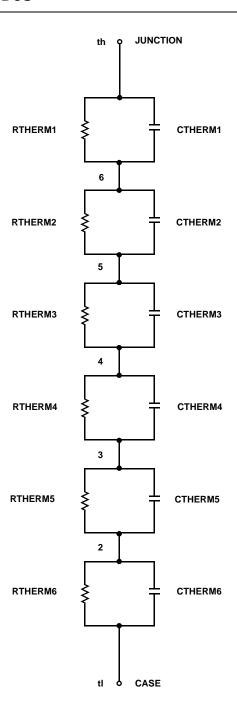
SABER Electrical Model

```
REV June 1997
template huf75329d n2, n1, n3
electrical n2, n1, n3
var i iscl
d..model dbodymod = (is = 7.50e-13, cjo = 1.51e-9, tt = 4.05e-8, m = 0.5)
d..model dbreakmod = ()
                                                                                                                                 LDRAIN
                                                                                  DPLCAP
                                                                                                                                            DRAIN
d..model dplcapmod = (cjo = 13.5e-10, is = 1e-30, n = 10, m = 0.85)
m..model mmedmod = (type=_n, vto = 3.25, kp = 2.50, is = 1e-30, tox = 1)
                                                                              10
m..model mstrongmod = (type=_n, vto = 3.80, kp = 70, is = 1e-30, tox = 1)
                                                                                                                                RLDRAIN
m..model mweakmod = (type=_n, vto = 2.91, kp = 0.06, is = 1e-30, tox = 1)
                                                                                              ≻RSLC1
                                                                                                           RDBREAK
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -7.90, voff = -4.90)
                                                                                RSLC<sub>2</sub>
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -4.90, voff = -7.90)
                                                                                                                    72
                                                                                                                                RDBODY
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.50, voff = 2.50)
                                                                                             Ŧ
                                                                                                 ISCL
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 2.50, voff = -0.50)
                                                                                                            DBREAK
                                                                                               50
c.ca n12 n8 = 1.72e-9
                                                                                               RDRAIN
c.cb n15 n14 = 1.52e-9
                                                                      ESG
                                                                                                                      11
                                                                                  EVTHRES
c.cin n6 n8 = 9.61e-10
                                                                                               21
                                                                                      <u>19</u>
8
                                                                                                              MWEAK
                                                                    EVTEMP
                                                   I GATE
d.dbody n7 n71 = model=dbodymod
                                                                                                                                DBODY
                                                            RGATE
                                         GATE
d.dbreak n72 n11 = model=dbreakmod
                                                                       18
22
                                                                                                               EBREAK
d.dplcap n10 n5 = model=dplcapmod
                                                                   20
                                                                                             -MSTRO
                                                  RLGATE
i.it n8 n17 = 1
                                                                                                                                LSOURCE
                                                                                         CIN
                                                                                                                                           SOURCE
                                                                                                   8
I.ldrain n2 n5 = 1e-9
I.lgate n1 n9 = 2.86e-9
                                                                                                              RSOURCE
                                                                                                                               RLSOURCE
I.Isource n3 n7 = 2.69e-9
k.k1 i(I.lgate) i(I.lsource) = I(I.lgate), I(I.lsource), 0.0085
                                                                                                                   RBREAK
                                                                                                              17
                                                                                                                             18
m.mmed n16 n6 n8 n8 = model=mmedmod, I = 1u, w = 1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, I = 1u, w = 1u
                                                                                                                              RVTEMP
                                                                                o S2B
                                                                     S<sub>1</sub>B
m.mweak n16 n21 n8 n8 = model=mweakmod, I = 1u, w = 1u
                                                                                        CB
                                                                                                                              19
                                                              CA
                                                                                                             IT
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = 1.94e-7
res.rdbody n71 n5 = 5.05e-3, tc1 = 2.21e-3, tc2 = 1.02e-6
                                                                                                                                VBAT
                                                                               <u>6</u>
8
                                                                        EGS
                                                                                            <u>5</u>
                                                                                     EDS
res.rdbreak n72 n5 = 2.14e-1, tc1 = 9.62e-4, tc2 = 1.23e-6
res.rdrain n50 n16 = 1e-3, tc1 = 8.04e-2, tc2 = 1.37e-4
                                                                                                           8
res.rgate n9 n20 = 1.52
res.rldrain n2 n5 = 10
                                                                                                                  RVTHRES
res.rlgate n1 n9 = 26.9
res.rlsource n3 n7 = 28.6
res.rslc1 n5 n51 = 1e-6, tc1 = 4.83e-3, tc2 = 1.16e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 13.85e-3, tc1 = 0, tc2 = 0
res.rvtemp n18 n19 = 1, tc1 = -1.35e-3, tc2 = 1.16e-6
res.rvthres n22 n8 = 1, tc1 = -3.43e-3, tc2 = -1.63e-5
spe.ebreak n11 n7 n17 n18 = 58.13
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc = 1
equations {
i(n51->n50) + = iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/135))** 3.5))
```

SPICE Thermal Model

REV 23 February 1999

HUF75329D


CTHERM1 th 6 2.80e-3
CTHERM2 6 5 1.00e-2
CTHERM3 5 4 6.80e-3
CTHERM4 4 3 7.00e-3
CTHERM5 3 2 1.60e-2
CTHERM6 2 tl 15.55

RTHERM1 th 6 7.94e-3
RTHERM2 6 5 1.98e-2
RTHERM3 5 4 5.57e-2
RTHERM4 4 3 3.13e-1
RTHERM5 3 2 4.71e-1
RTHERM6 2 tl 6.26e-2

SABER Thermal Model

SABER thermal model HUF75329D

```
template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 2.80e-3 ctherm.ctherm2 6 5 = 1.00e-2 ctherm.ctherm3 5 4 = 6.80e-3 ctherm.ctherm4 4 3 = 7.00e-3 ctherm.ctherm5 3 2 = 1.60e-2 ctherm.ctherm6 2 tl = 15.55 rtherm.rtherm1 th 6 = 7.94e-3 rtherm.rtherm2 6 5 = 1.98e-2 rtherm.rtherm3 5 4 = 5.57e-2 rtherm.rtherm4 4 3 = 3.13e-1 rtherm.rtherm5 3 2 = 4.71e-1 rtherm.rtherm6 2 tl = 6.26e-2 }
```


ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative