

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

FAIRCHILD

SEMICONDUCTOR

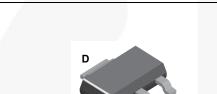
-250 V, -0.55 A, 4.0 Ω

efficiency switching DC/DC converters.

SOT-223

FQT2P25

Description


November 2013

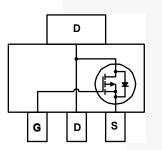
I_D = -0.275 A • Low Gate Charge (Typ. 6.5 nC)

• Low Crss (Typ. 6.5 pF)

Features

• 100% Avalanche Tested

P-Channel QFET® MOSFET


These P-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary,

planar stripe, DMOS technology. This advanced

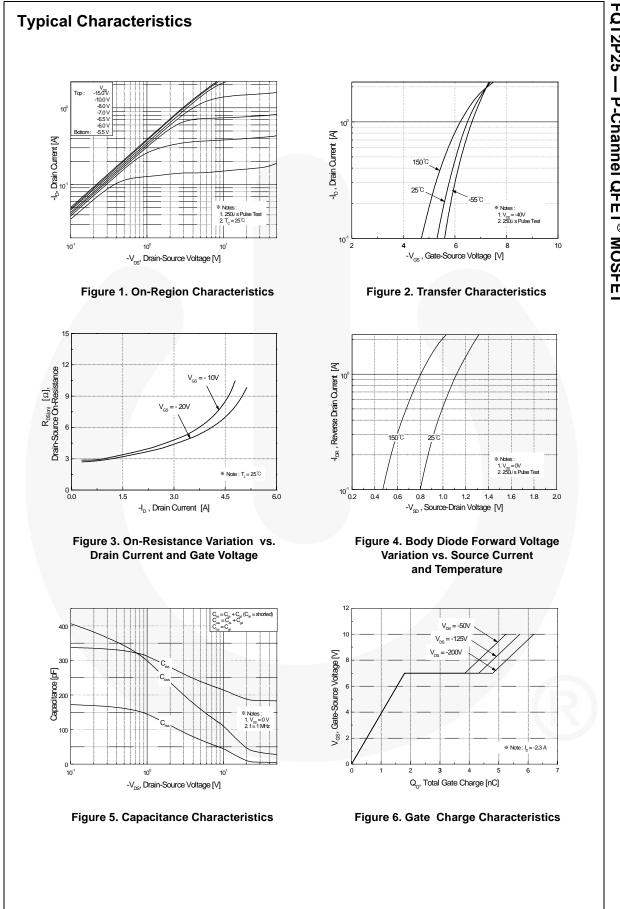
technology has been especially tailored to minimize on-

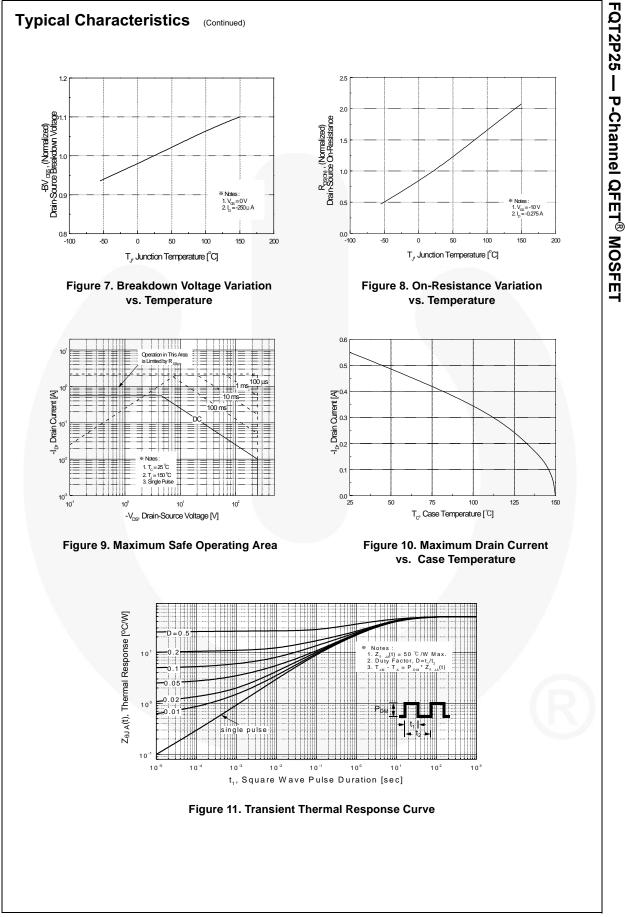
state resistance, provide superior switching performance,

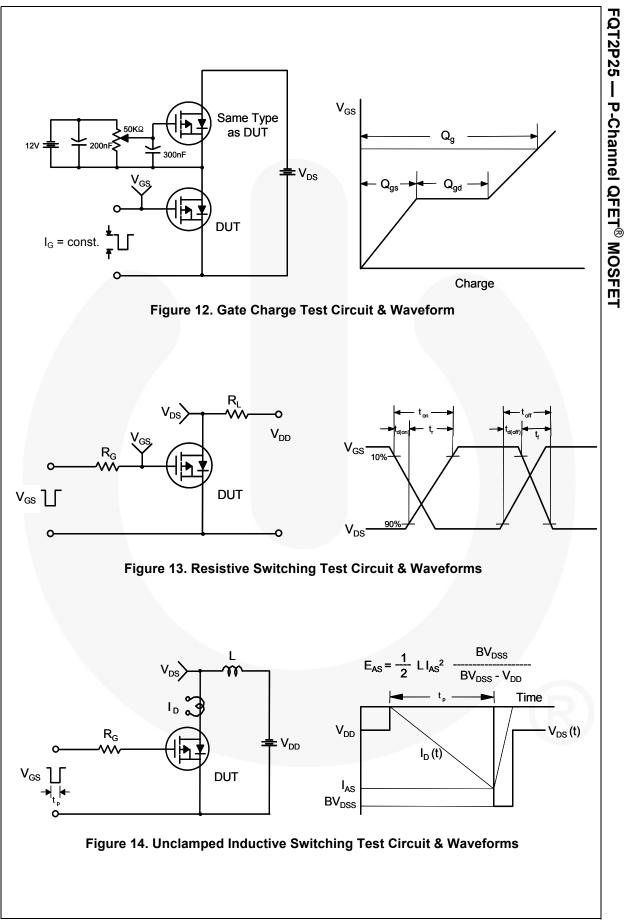
and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high

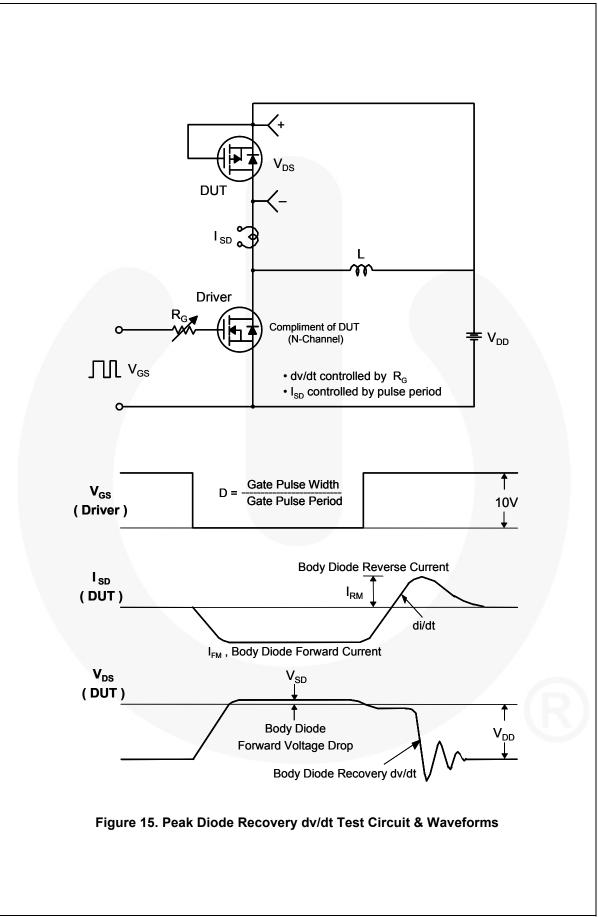
• -0.55 A, -250 V, $R_{DS(on)}$ = 4.0 Ω (Max.) @ V_{GS} = -10 V,

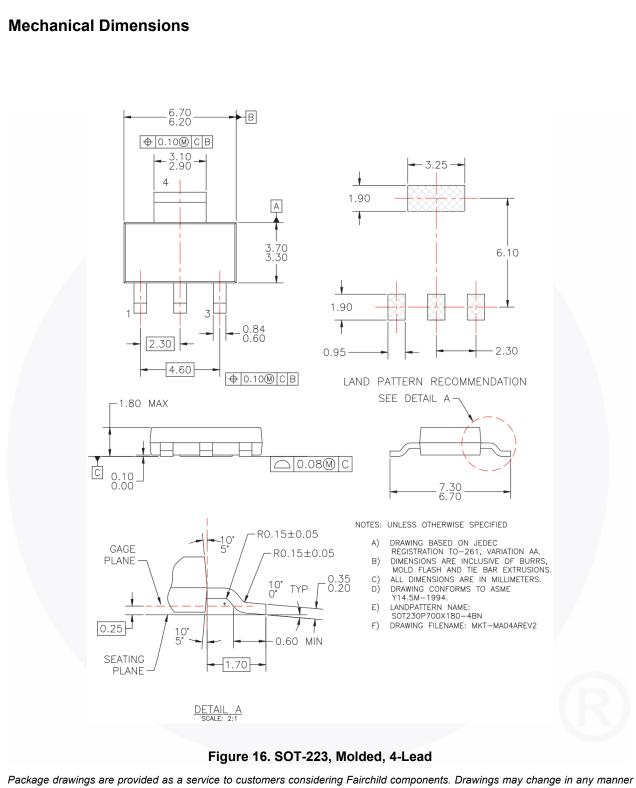
Absolute Maximum Ratings T_c = 25°C unless otherwise noted.


	U			
Symbol	Parameter	FQT2P25TF	Unit	
V _{DSS}	Drain-Source Voltage		-250	V
I _D	Drain Current - Continuous (T _C = 25°	C)	-0.55	A
	- Continuous (T _C = 100)°C)	-0.35	А
I _{DM}	Drain Current - Pulsed	(Note 1)	-2.2	A
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	120	mJ
I _{AR}	Avalanche Current	(Note 1)	-0.55	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	0.25	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	-5.5	V/ns
P _D	Power Dissipation ($T_C = 25^{\circ}C$)		2.5	W
	- Derate above 25°C		0.02	W/°C
T _J , T _{STG}	Operating and Storage Temperature Rar	-55 to +150	°C	
TL	Maximum lead temperature for soldering 1/8" from case for 5 seconds	300	°C	


Thermal Characteristics


Symbol	Parameter	FQT2P25TF	Unit
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient *	50	°C/W


* When mounted on the minimum pad size recommended (PCB Mount)


FQT2P2	mber	er Top Mark Pac		age	Packing Method	Reel	Size	Tape Wi	idth	Quantity
	FQT2P25TF FQT2P25		SOT	T-223 Tape and Reel 13		"	12 mm		4000 units	
lectri	cal Cl	naracteristics	T _C = 25°C un	less otherv	vise noted.					
Symbol		Parameter			Test Conditions		Min	Тур	Max	Unit
Off Cha							1	1		
BV _{DSS}	Drain-S	Source Breakdown Vol	tage	$V_{GS} = 0 V, I_D = -250 \mu A$			-250			V
ΔB _{VDSS} /		Breakdown Voltage Temperature		$I_D = -250 \ \mu A$, Referenced to 25°C			-0.2		V/°C	
ΔT_{J}	Coeffic	ent	_							
I _{DSS}	Zero G	ate Voltage Drain Curr	ent		$V_{DS} = -250 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$				-1	μΑ
				$V_{DS} = -200 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$				-10	μΑ	
		Body Leakage Current,		$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA	
I _{GSSR}	Gate-B	ody Leakage Current,	Reverse	V _{GS} =	30 V, V _{DS} = 0 V				100	nA
On Cha	ractori	istics								
V _{GS(th)}		racteristics Gate Threshold Voltage		V _{DS} = V _{GS} , I _D = -250 μA		-3.0		-5.0	V	
R _{DS(on)}		0	_			-	-5.0		-5.0	v
TOS(on)		Static Drain-Source On-Resistance		V _{GS} =	-10 V, I _D = -0.275 A			3.15	4.0	Ω
9 _{FS}	Forwar	d Transconductance	_	V _{DS} =	-40 V, I _D = -0.275 A			0.6		S
010			_	20						
Dynam	ic Cha	racteristics								
C _{iss}	Input C	Capacitance		Vpc =	-25 V, V _{GS} = 0 V,			190	250	pF
C _{oss}	Output	Capacitance		f = 1.0 MHz			40	55	pF	
	Revers	e Transfer Capacitanc	е					6.5	8.5	pF
C _{rss}	4		e					6.5	8.5	pF
C _{rss}	ing Ch	aracteristics	e	1				6.5	8.5	pF
C _{rss} Switchi	ing Ch		e	Vpp =	-125 V. In = -2.3 A.			6.5 8.5	8.5 25	pF ns
C _{rss} Switchi	i ng Ch a Turn-O	aracteristics	e		-125 V, I _D = -2.3 A, 25 Ω				I	
C _{rss} Switchi t _{d(on)} t _r	i ng Ch a Turn-O Turn-O	aracteristics	e	V _{DD} =	-			8.5	25	ns
C _{rss} Switchi t _{d(on)} t _r t _{d(off)}	i ng Ch a Turn-O Turn-O Turn-O	aracteristics In Delay Time In Rise Time	e		-	(Note 4)		8.5 40	25 90	ns
$\frac{c_{rss}}{switchi}$ $\frac{t_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ Q_g	i ng Ch a Turn-O Turn-O Turn-O Turn-O	aracteristics In Delay Time In Rise Time Iff Delay Time	e	R _G = 2	-	(Note 4)		8.5 40 12	25 90 35	ns ns ns
$\frac{C_{rss}}{Switchi}$ $\frac{f_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ $\frac{Q_g}{Q_{gs}}$	ing Cha Turn-O Turn-O Turn-O Turn-O Total G	aracteristics In Delay Time In Rise Time Iff Delay Time Iff Fall Time	e	R _G = 2	25 Ω -200 V, I _D = -2.3 A,	(Note 4)	 	8.5 40 12 25	25 90 35 60	ns ns ns ns
$\frac{C_{rss}}{Switchi}$ $\frac{f_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ $\frac{Q_g}{Q_{gs}}$	ing Cha Turn-O Turn-O Turn-O Turn-O Total G Gate-S	aracteristics on Delay Time on Rise Time off Delay Time off Fall Time cate Charge	e	R _G = 2	25 Ω -200 V, I _D = -2.3 A,	(Note 4) (Note 4)	 	8.5 40 12 25 6.5	25 90 35 60 8.5	ns ns ns ns nC
$\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_r}{t_d(off)}$ $\frac{t_f}{Q_g}$ Q_{gs} Q_{gd}	ing Cha Turn-O Turn-O Turn-O Turn-O Total G Gate-S Gate-E	aracteristics In Delay Time In Rise Time Iff Delay Time Iff Fall Time Iff Fall Time Iff Fall Charge Source Charge Drain Charge		$R_G = 2$ $V_{DS} =$ $V_{GS} =$	25 Ω -200 V, I _D = -2.3 A, -10 V	(Note 4)	 	8.5 40 12 25 6.5 1.8	25 90 35 60 8.5 	ns ns ns ns nC nC
$\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_r}{t_{d(off)}}$ $\frac{t_f}{Q_g}$ Q_{gs} Q_{gd}	ing Cha Turn-O Turn-O Turn-O Turn-O Total G Gate-S Gate-E	aracteristics In Delay Time In Rise Time Iff Delay Time Iff Fall Time State Charge Source Charge		$R_G = 2$ $V_{DS} =$ $V_{GS} =$	25 Ω -200 V, I _D = -2.3 A, -10 V	(Note 4)	 	8.5 40 12 25 6.5 1.8	25 90 35 60 8.5 	ns ns ns ns nC nC
$\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_r}{t_{d(off)}}$ $\frac{t_f}{Q_g}$ Q_{gs} Q_{gd}	ing Chi Turn-O Turn-O Turn-O Total G Gate-S Gate-D	aracteristics In Delay Time In Rise Time Iff Delay Time Iff Fall Time Iff Fall Time Iff Fall Charge Source Charge Drain Charge	istics a	$R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ nd Max	25 Ω -200 V, I _D = -2.3 A, -10 V ximum Ratings	(Note 4)	 	8.5 40 12 25 6.5 1.8	25 90 35 60 8.5 	ns ns ns ns nC nC
$\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_{d(off)}}{t_{f}}$ $\frac{t_{d(off)}}{Q_{g}}$ $\frac{Q_{gs}}{Q_{gd}}$ Drain-S	ing Cha Turn-O Turn-O Turn-O Turn-O Total G Gate-S Gate-D Source Maxim	aracteristics In Delay Time In Rise Time Iff Delay Time Iff Fall Time Bate Charge Bource Charge Drain Charge	istics ai Source Dic	$R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ $N_{GS} =$	25 Ω -200 V, I _D = -2.3 A, -10 V ximum Ratings vard Current Current	(Note 4)	 	8.5 40 12 25 6.5 1.8 3.0	25 90 35 60 8.5 	ns ns ns nC nC nC
$\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_{r}}{t_{f}}$ $\frac{Q_{g}}{Q_{gs}}$ $\frac{Q_{gg}}{Q_{gd}}$ $Drain-S$ I_{S}	ing Cha Turn-O Turn-O Turn-O Turn-O Total G Gate-S Gate-C Gource Maxim Maxim	aracteristics In Delay Time In Rise Time Iff Delay Time Iff Fall Time Iff Fall Time Iff Charge Dource Charge Drain Charge Diode Character Imme Continuous Drain-5	istics a Source Dic ce Diode F	$R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ $N_{GS} =$	25 Ω -200 V, $I_D = -2.3$ A, -10 V ximum Ratings vard Current Current 0 V, $I_S = -0.55$ A	(Note 4)	 	8.5 40 12 25 6.5 1.8 3.0	25 90 35 60 8.5 	ns ns ns nC nC nC A
Crss Switchi td(on) tr td(off) tf Qg Qgs Qgd Drain-S Is	ing Cha Turn-O Turn-O Turn-O Turn-O Total G Gate-S Gate-D Source Maxim Maxim Drain-S	aracteristics In Delay Time In Rise Time Iff Delay Time Iff Fall Time Source Charge Drain Charge Diode Character um Continuous Drain-Source	istics a Source Dic ce Diode F	$R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$	25 Ω -200 V, I _D = -2.3 A, -10 V ximum Ratings vard Current Current	(Note 4)	 	8.5 40 12 25 6.5 1.8 3.0	25 90 35 60 8.5 -0.55 -2.2	ns ns ns nC nC nC A A

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TTE23-004

FQT2P25 — P-Channel QFET[®] MOSFET

Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 166

"QT2P25 —

P-Channel QFET[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC