onsemi

FGHL40T120RWD

Description

Using the novel field stop 7th generation IGBT technology and the Gen7 Diode in TO247 3–lead package, FGHL40T120RWD offers the optimum performance with low conduction losses and good switching controllability for a high efficiency operation in various applications like motor control, UPS, data center and high–power switch.

Features

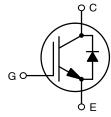
- Low Conduction Loss and Optimized Switching
- Maximum Junction Temperature $T_J = 175^{\circ}C$
- Positive Temperature Coefficient for Easy Parallel Operation
- High Current Capability
- 100% of the Parts are Dynamically Tested
- Short Circuit Rated
- RoHS Compliant

Applications

- Motor Control
- UPS
- General Application Requiring High Power Switch

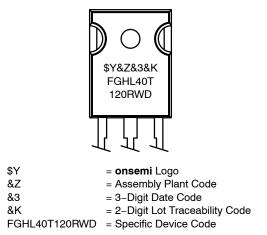
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Parameter				
Collector-to-Emitter Voltage				
	V _{GES}	±20		
r Voltage		±30		
T _C = 25°C (Note 1)	۱ _C	80	А	
$T_C = 100^{\circ}C$		40		
$T_{C} = 25^{\circ}C$	PD	600	W	
$T_C = 100^{\circ}C$		300		
$\begin{array}{l} T_C = 25^\circ C \text{ (Note 2)},\\ t_p = 10 \ \mu s \end{array}$	I _{CM}	120	A	
T _C = 25°C (Note 1)	١ _F	80		
$T_C = 100^{\circ}C$		40		
T _C = 25°C, t _p = 10 μs (Note 1)	I _{FM}	120		
Short Circuit Withstand Time V_{GE} = 15 V, V_{CC} = 600 V, T_{C} = 150°C			μs	
Operating Junction and Storage Temperature Range			°C	
Lead Temperature for Soldering Purposes				
	r Voltage $T_C = 25^{\circ}C \text{ (Note 1)}$ $T_C = 100^{\circ}C$ $T_C = 25^{\circ}C$ $T_C = 25^{\circ}C$ $T_C = 25^{\circ}C \text{ (Note 2)},$ $t_p = 10 \ \mu\text{s}$ $T_C = 25^{\circ}C \text{ (Note 1)}$ $T_C = 25^{\circ}C \text{ (Note 1)}$ $T_C = 25^{\circ}C,$ $t_p = 10 \ \mu\text{s} \text{ (Note 1)}$ me $T_C = 150^{\circ}C$ torage Temperature	J J age V _{CES} VGES VGES T _C = 25°C (Note 1) I _C T _C = 100°C P _D T _C = 100°C P _D T _C = 25°C (Note 2), t _p = 10 µs I _{CM} T _C = 25°C (Note 2), t _p = 10 µs I _{CM} T _C = 25°C (Note 1) I _F T _C = 25°C, t _p = 10 µs (Note 1) I _F T _C = 150°C T _{SC} torage Temperature T _J , T _{stg}	$\begin{array}{c c c c c c c } & V_{CES} & 1200 \\ \hline V_{CES} & 1200 \\ \hline V_{GES} & \pm 20 \\ \hline & & & & & & \\ \hline & & & & & \\ \hline T_C = 25^\circ C \ (Note 1) & I_C & 80 \\ \hline T_C = 100^\circ C & & & & \\ \hline & & & & & & \\ \hline T_C = 100^\circ C & & & & \\ \hline & & & & & \\ \hline T_C = 25^\circ C \ (Note 2), & & & \\ t_p = 10 \ \mu s & & & \\ \hline & & & & & \\ \hline T_C = 25^\circ C \ (Note 1) & I_F & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline T_C = 25^\circ C, & & & I_{FM} & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Value limit by bond wire.

2. Repetitive rating: pulse width limited by max. Junction temperature.


BV _{CES}	V _{CE(SAT)}	I _C
1200 V	1.5 V	40 A

PIN CONNECTIONS

MARKING DIAGRAM

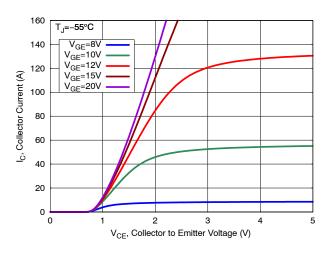
ORDERING INFORMATION

Device	Package	Shipping
FGHL40T120RWD	TO-247 (Pb-Free)	30 Units / Tube

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case for IGBT	$R_{\theta JC}$	0.25	°C/W
Thermal Resistance, Junction-to-Case for Diode	$R_{\theta JCD}$	0.42	
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	40	

ELECTRICAL CHARACTERISTICS OF IGBT (T_J = 25°C unless otherwise noted)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						-
Collector-to-Emitter Breakdown Voltage	BV _{CES}		1200			V
Collector-to-Emitter Breakdown Voltage Temperature Coefficient	$\Delta BV_{CES}/\Delta T_{J}$	V _{GE} = 0 V, I _C = 5 mA		1226		mV/°C
Zero Gate Voltage Collector Current	ICES	V_{GE} = 0 V, V_{CE} = V_{CES}			40	μA
Gate-to-Emitter Leakage Current	I _{GES}	V_{GE} = 20 V, V_{CE} = 0 V			±400	nA
ON CHARACTERISTICS					•	
Gate Threshold Voltage	V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 40 \text{ mA}, \\ T_J = 25^{\circ}\text{C}$	4.9	5.94	6.7	V
Collector-to-Emitter Saturation Voltage	V _{CE(sat)}	$V_{GE} = 15 \text{ V}, \text{ I}_{C} = 40 \text{ A}, $ $T_{J} = 25^{\circ}\text{C}$	1.2	1.49	1.8	
		V_{GE} = 15 V, I _C = 40 A, T _J = 175°C		1.83		
DYNAMIC CHARACTERISTICS						-
Input Capacitance	Cies			4670		pF
Output Capacitance	C _{oes}	V _{GE} = 0 V, V _{CE} = 30 V, f = 1 MHz		171		
Reverse Transfer Capacitance	C _{res}			16.7		
Total Gate Charge	Qg			174		nC
Gate-to-Emitter Charge	Q _{ge}	$V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V},$ $I_{C} = 40 \text{ A}$		42.2		
Gate-to-Collector Charge	Q _{gc}	IC = 40 A		73		
SWITCHING CHARACTERISTICS						
Turn-on Delay Time	t _{d(on)}			37		ns
Turn-off Delay Time	t _{d(off)}			269		
Rise Time	t _r			22		
Fall Time	t _f	V_{CE} = 600 V, V_{GE} = 0/15 V, I _C = 20 A R _G = 4.7 Ω, T _J = 25°C		136		
Turn-on Switching Loss	E _{on}	10 - 20 / 110 - 11/ 11, 1 <u>1</u> - 20 0		1.2		mJ
Turn-off Switching Loss	E _{off}			1.4		
Total Switching Loss	E _{ts}			2.6		
Turn-on Delay Time	t _{d(on)}			38		ns
Turn-off Delay Time	t _{d(off)}	V_{CE} = 600 V, V_{GE} = 0/15 V, I _C = 40 A R _G = 4.7 Ω, T _J = 25°C		184		
Rise Time	t _r			46		1
Fall Time	t _f			134		1
Turn-on Switching Loss	E _{on}			2.9		mJ
Turn-off Switching Loss	E _{off}	1		2.1		1
Total Switching Loss	E _{ts}	1		5.0		1

ELECTRICAL CHARACTERISTICS OF IGBT (T_J = 25°C unless otherwise noted) (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS						
Turn-on Delay Time	t _{d(on)}			34		ns
Turn-off Delay Time	t _{d(off)}			328		
Rise Time	t _r			24		
Fall Time	t _f	$V_{GE} = 0/15 \text{ V}, \text{ I}_{C} = 20 \text{ A},$ $V_{CE} = 600 \text{ V}, \text{ R}_{G} = 4.7 \Omega,$		240		
Turn-on Switching Loss	E _{on}	$T_J = 175^{\circ}C$		2.2		mJ
Turn-off Switching Loss	E _{off}			2.2		
Total Switching Loss	E _{ts}			4.4		
Turn-on Delay Time	t _{d(on)}			38		ns
Turn–off Delay Time	t _{d(off)}			213		
Rise Time	t _r	V 0/15 V I 20 A		51		
Fall Time	t _f	V_{GE} = 0/15 V, I _C = 20 A, V_{CE} = 600 V, R _G = 4.7 Ω, T_{J} = 175°C		205		
Turn-on Switching Loss	E _{on}	T _J = 175°C		4.5		mJ
Turn-off Switching Loss	E _{off}			2.9		
Total Switching Loss	E _{ts}			7.4		
DIODE CHARACTERISTICS						
Forward Voltage	V _F	I _F = 40 A, T _J = 25°C	1.46	1.69	2.08	V
		I _F = 40 A, T _J = 175°C		1.63		
DIODE SWITCHING CHARACTERISTIC	S, INDUCTIVE LOAD)				
Reverse Recovery Time	t _{rr}			163		ns
Reverse Recovery Charge	Q _{rr}	V _R = 600 V, I _F = 20 A,		1462		nC
Reverse Recovery Energy	E _{REC}	$dI_F/dt = 500 \text{ A}/\mu \text{s}, T_J = 25^{\circ}\text{C}$		0.5		mJ
Peak Reverse Recovery Current	I _{RRM}			17.9		Α
Reverse Recovery Time	t _{rr}			248		ns
Reverse Recovery Charge	Q _{rr}	V _R = 600 V, I _F = 40 A,		2372		nC
Reverse Recovery Energy	E _{REC}	$dI_F/dt = 500 \text{ A/}\mu\text{s}, T_J = 25^{\circ}\text{C}$		0.8		mJ
Peak Reverse Recovery Current	I _{RRM}			19.2		Α
Reverse Recovery Time	t _{rr}			269		ns
Reverse Recovery Charge	Q _{rr}	V _R = 600 V, I _F = 20 A,		3447		nC
Reverse Recovery Energy	E _{REC}	$d_{\rm F}/dt = 500 \text{ A}/\mu \text{s}, T_{\rm J} = 175^{\circ}\text{C}$		1.3		mJ
Peak Reverse Recovery Current	I _{RRM}			25.6		А
Reverse Recovery Time	t _{rr}		1	422		ns
Reverse Recovery Charge	Q _{rr}	V _R = 600 V, I _F = 40 A,		5717		nC
Reverse Recovery Energy	E _{REC}	$dI_F/dt = 500 \text{ A}/\mu\text{s}, T_J = 175^{\circ}\text{C}$		2.3		mJ
		1				

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

160

140

120

100 80

60

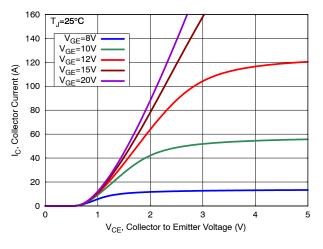
40

20

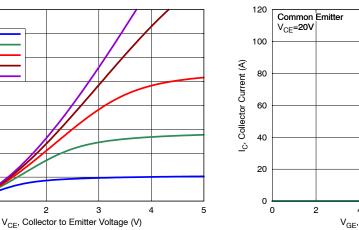
0

0

I_C, Collector Current (A)


T_J=175°C

V_{GE}=8V V_{GE}=10V


V_{GE}=12V

V_{GE}=15V

V_{GE}=20V

Figure 3. Output Characteristics

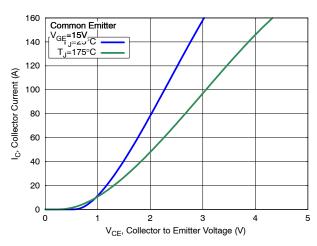


Figure 5. Saturation Characteristics

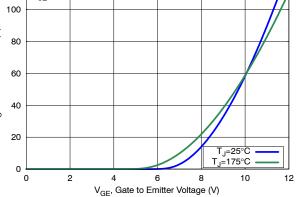
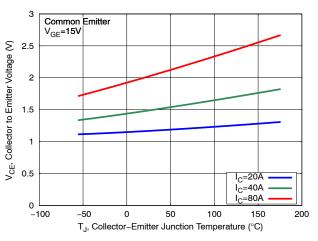
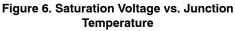
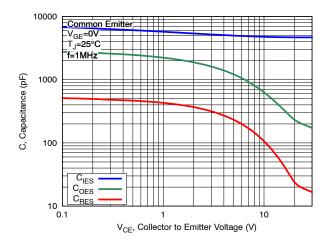
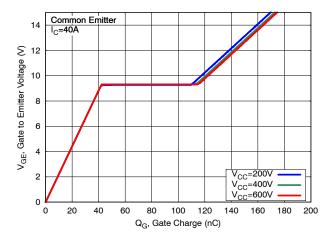





Figure 4. Transfer Characteristics



TYPICAL CHARACTERISTICS

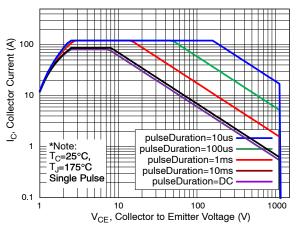


Figure 9. SOA Characteristics

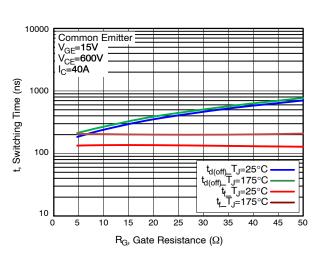


Figure 11. Turn-Off Switching Time vs. Gate Resistance

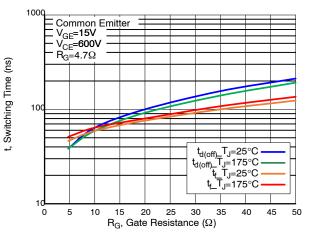


Figure 10. Turn-On Switching Time vs Gate Resistance

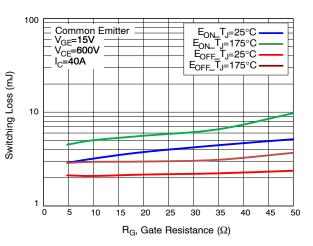
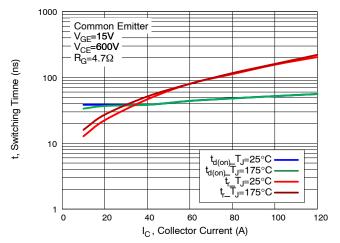



Figure 12. Switching Loss vs. Gate Resistance

TYPICAL CHARACTERISTICS

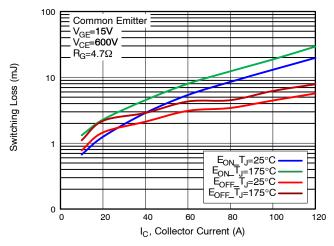


Figure 15. Switching Loss vs. Collector Current

100

80

60

40

20

0

400

600

800

I_{RRM}, Reverse Recovery Current (A)

V_R=600V I_F=40A

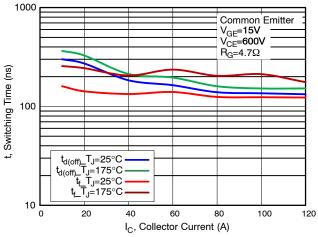
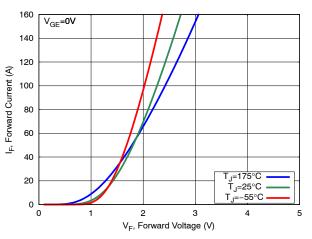
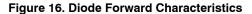
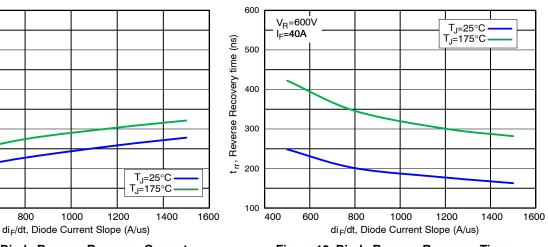
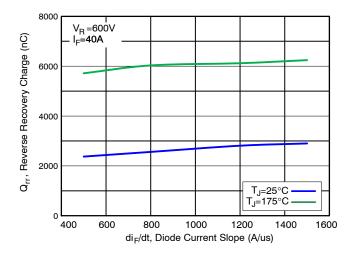
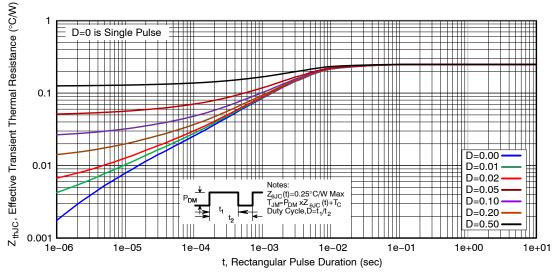
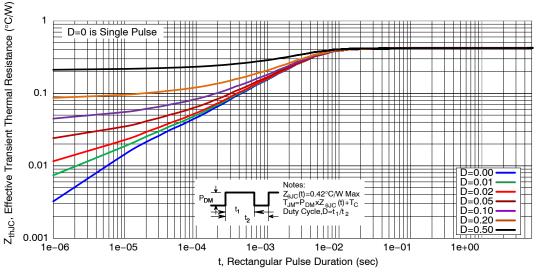
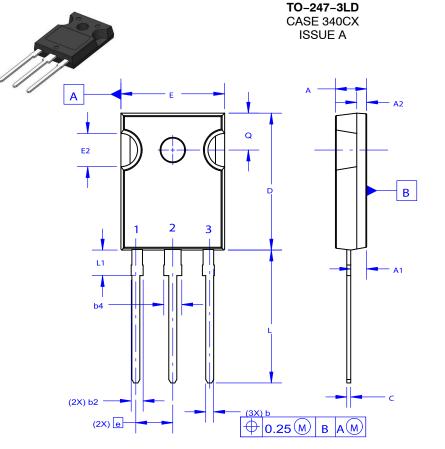





Figure 14. Turn-Off Switching Time vs. Collector Current






TYPICAL CHARACTERISTICS



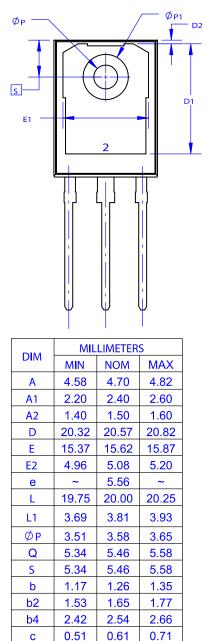
NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

γ

GENERIC **MARKING DIAGRAM*** Х

XXXXX	= Specific Device Code
Α	= Assembly Location


- = Assembly Location
- = Year
- ww = Work Week
- G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON93302G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 06 JUL 2020

D1

D2

E1

ØP1

13.08

0.51

12.81

6.60

~

0.93

~

6.80

~

1.35

~

7.00

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>