

Ultrafast Dual Diode 60 A, 200 V

FFA60UP20DN

Description

The FFA60UP20DN is an ultrafast diode with low forward voltage drop and rugged UIS capability. This device is intended for use as freewheeling and clamping diodes in a variety of switching power supplies and other power switching applications. It is specially suited for use in switching power supplies and industrial applications as Welder and UPS application.

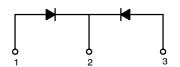
Features

- Ultrafast Recovery, $T_{rr} < 32 \text{ ns}$ (@ $I_F = 30 \text{ A}$)
- Max. Forward Voltage, $V_F = 1.15 \text{ V } (@ T_C = 25^{\circ}\text{C})$
- Reverse Voltage: V_{RRM} = 200 V
- Avalanche Energy Rated
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Power Switching Circuits
- Output Rectifiers
- Free-Wheeling Diodes
- SMPS
- Welder
- UPS

ABSOLUTE MAXIMUM RATINGS

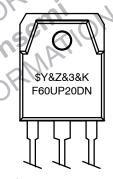

(per diode) T_C = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
DC Blocking Voltage	V_{R}	200	V
Peak Repetitive Reverse Voltage	V_{RBM}	200	V
Working Peak Reverse Voltage	V _{RWM}	200	V
Average Rectified Forward Current (@ T _C = 100°C)	I _{F(AV)}	30	Α
Non-repetitive Peak Surge Current 60 Hz Single Half-Sine Wave	I _{FSM}	300	Α
Operating Junction and Storage Temperature	T _J , T _{STG}	-65 to +175	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.4	°C/W


1. Anode 2. Cathode 3. Anode

1.Anode 2.Cathode 3.Anode

TO-3P-3LD / EIAJ SC-65, ISOLATED CASE 340BZ

MARKING DIAGRAM

\$Y = Logo

&Z = Assembly Plant Code

&3 = Date Code

&K = Lot Run Traceability Code F60UP20DN = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

FFA60UP20DN

ELECTRICAL CHARACTERISTICS

(per diode) $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _F (Note 1)	Maximum Instantaneous Forward Voltage	I _F = 30 A, T _C = 25°C I _F = 30 A, T _C = 100°C	- -	- -	1.15 1.0	V
I _R (Note 1)	Maximum Instantaneous Reverse Current	V _R = 200 V, T _C = 25°C V _R = 200 V, T _C = 100°C		- -	10 100	μΑ
t _{rr}	Reverse Recovery Time	$I_F = 30 \text{ A}, \text{ di}_F/\text{dt} = 200 \text{ A}/\mu\text{s}, \text{ V}_R = 130 \text{ V}$	-	32	-	ns
I _{rr}	Reverse Recovery Current		-	2.4	-	Α
Q _{rr}	Reverse Recovery Charge		-	38.4	_	nC
t _{rr}	Maximum Reverse Recovery Time	I _F = 1 A, di _F /dt = 100 A/μs	-	_	40	ns
W _{AVL}	Avalanche Energy	L = 40 mH	2	_	_	mJ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TEST CIRCUIT AND WAVEFORMS

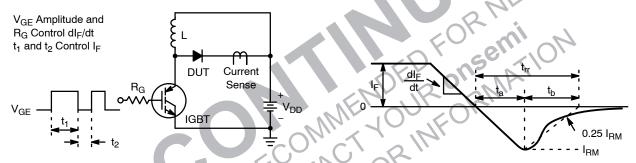


Figure 1. Diode Reverse Recovery Test Circuit & Waveform

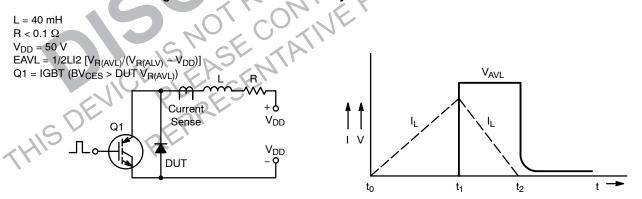


Figure 2. Unclamped Inductive Switching Test Circuit & Waveform

ORDERING INFORMATION

Part Number	Top Mark	Package	Shipping
FFA60UP20DNTU	F60UP20DN	TO-3P-3LD (Pb-Free)	30 Units / Tube

^{1.} Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%

FFA60UP20DN

TYPICAL CHARACTERISTICS



Figure 3. Typical Forward Voltage Drop vs. Forward Current

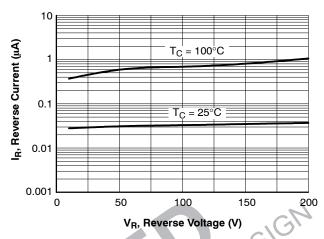


Figure 4. Typical Reverse Current vs. Reverse Voltage

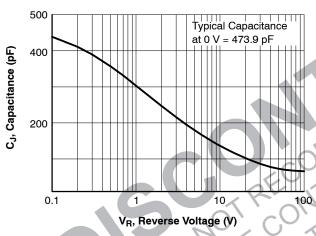


Figure 5. Typical Junction Capacitance

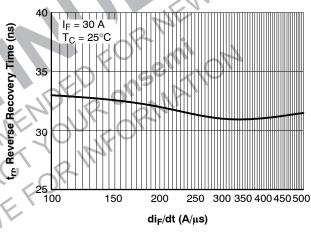


Figure 6. Typical Reverse Recovery Time vs. di_F/dt

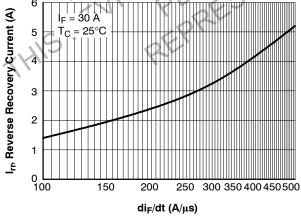
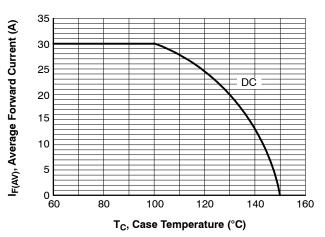



Figure 7. Typical Reverse Recovery Current vs. di_F/dt

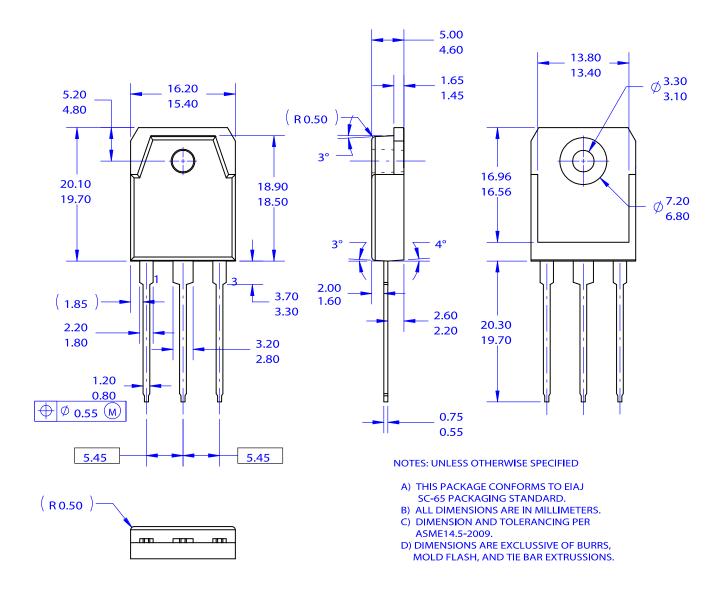


Figure 8. Forward Current Derating Curve

TO-3P-3LD / EIAJ SC-65, ISOLATED CASE 340BZ ISSUE O

DATE 31 OCT 2016

DOCUMENT NUMBER:	98AON13862G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-3P-3LD / EIAJ SC-65, ISOLATED		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales