onsemi

MOSFET – N-Channel, POWERTRENCH[®]

100 V, 6.6 A, 28 m Ω

FDT86102LZ

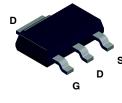
General Description

This N-Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that has been especially tailored to minimize the on-state resistance and switching loss. G-S zener has been added to enhance ESD voltage level.

Features

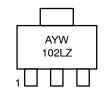
- Max $r_{DS(on)} = 28 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 6.6 \text{ A}$
- Max $r_{DS(on)} = 38 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 5.5 \text{ A}$
- HBM ESD Protection Level > 6 kV Typical (Note 4)
- Very Low Qg and Qgd Compared to Competing Trench Technologies
- Fast Switching Speed
- 100% UIL Tested
- This Device is Pb-Free, Halide Free and RoHS Compliant

Applications


- DC DC Conversion
- Inverter
- Synchronous Rectifier

Specifications

MOSFET MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)


Symbol	Para	Ratings	Unit	
V _{DS}	Drain to Source Voltag	100	V	
V _{GS}	Gate to Source Voltage		±20	V
I _D	Drain Current	-Continuous	6.6	А
		-Pulsed	40	
E _{AS}	Single Pulse Avalanch	84	mJ	
PD	Power Dissipation	$T_A = 25^{\circ}C$ (Note 1a)	2.2	W
		$T_A = 25^{\circ}C$ (Note 1b)	1.0	
T _J , T _{STG}	Operating and Storag Temperature Range	-55 to +150	°C	

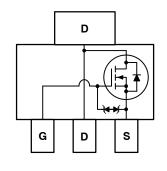
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

SOT-223 CASE 318H

MARKING DIAGRAM

A = Assembly Location

= Year


Υ

W

= Work Week

102LZ = Specific Device Code

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

THERMAL CHARACTERISTICS

Reverse Recovery Time

Reverse Recovery Charge

t_{rr}

Q_{rr}

Symbol	Parameter	Ratings	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case (Note 1)	12	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	55	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
FF CHARA	ACTERISTICS	•				
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	100			V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		70		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			±10	μΑ
ON CHARA	CTERISTICS				-	-
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	1.0	1.4	3.0	V
$\frac{\Delta V_{\text{GS(th)}}}{\Delta T_{\text{J}}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		-6		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 6.6 A		22	28	mΩ
		V_{GS} = 4.5 V, I _D = 5.5 A		27	38	
		V_{GS} = 10 V, I _D = 6.6 A, T _J = 125°C		36	46	
9FS	Forward Transconductance	$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 6.6 \text{ A}$		26		S
YNAMIC C	HARACTERISTICS	•				
C _{iss}	Input Capacitance	V_{DS} = 50 V, V_{GS} = 0 V, f = 1 MHz		1118	1490	pF
C _{oss}	Output Capacitance	1		181	245	pF
C _{rss}	Reverse Transfer Capacitance	1		7.5	15	pF
Rg	Gate Resistance			0.5		Ω
WITCHING	CHARACTERISTICS				-	-
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 6.6 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$		6.6	14	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$		1.9	10	ns
t _{d(off)}	Turn-Off Delay Time	1		19	31	ns
t _f	Fall Time	1		2.2	10	ns
Q _{g(TOT)}	Total Gate Charge	V_{GS} = 0 V to 10 V, V_{DD} = 50 V, I_{D} = 6.6 A		17	25	nC
		V_{GS} = 0 V to 4.5 V, V_{DD} = 50 V, I_{D} = 6.6 A		8.3	12	
Q _{gs}	Gate to Source Charge	V _{DD} = 50 V, I _D = 6.6 A		2.6		nC
Q _{gd}	Gate to Drain "Miller" Charge	1		2.2		nC
	JRCE DIODE CHARACTERISTICS			-	-	-
V_{SD}	Source to Drain Diode Forward	V _{GS} = 0 V, I _S = 6.6 A (Note 2)		0.82	1.3	V
	Voltage	V _{GS} = 0 V, I _S = 1.0 A (Note 2)		0.68	1.2	1

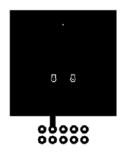
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 $I_F = 6.6 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$

40

36

64

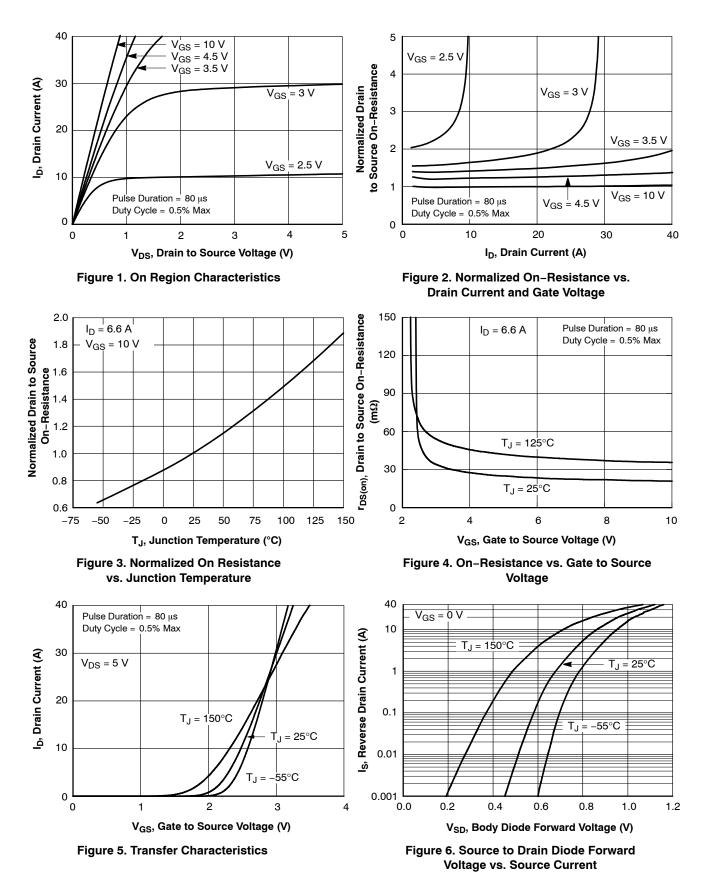

58

ns

nC

NOTES:

- 1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.



a. 55°C/W when mounted on a 1 in² pad of 2 oz copper

b. 118°C/W when mounted on a minimum pad of 2 oz copper

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
 Starting T_J = 25°C, L = 1 mH, I_{AS} = 13 A, V_{DD} = 90 V, V_{GS} = 10 V.
 The diode connected between gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

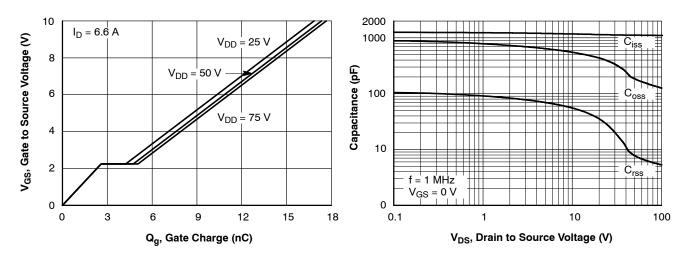
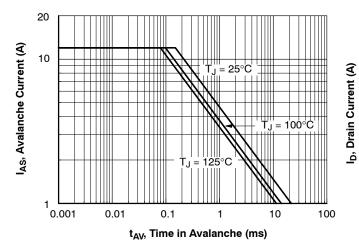
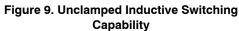




Figure 7. Gate Charge Characteristics

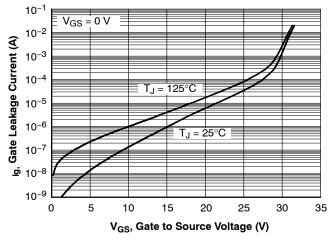


Figure 11. Gate Leakage Current vs Gate to Source Voltage

Figure 8. Capacitance vs. Drain to Source Voltage

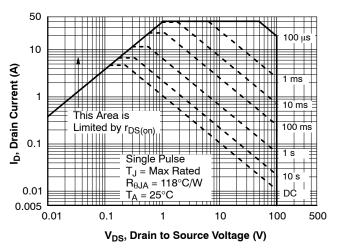
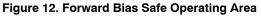
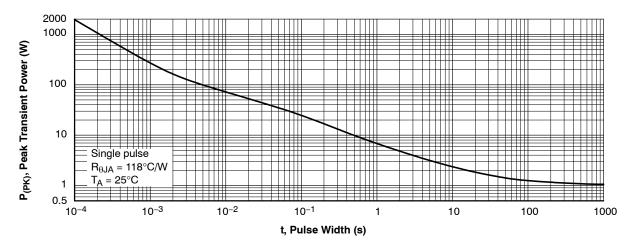





Figure 10. Maximum Continuous Drain Current vs Case Temperature

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

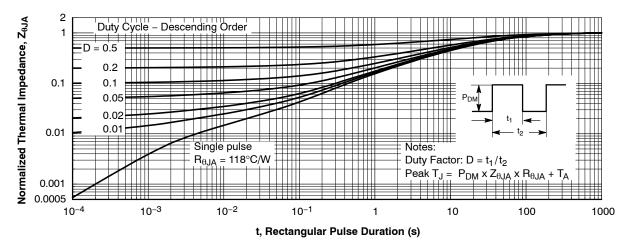
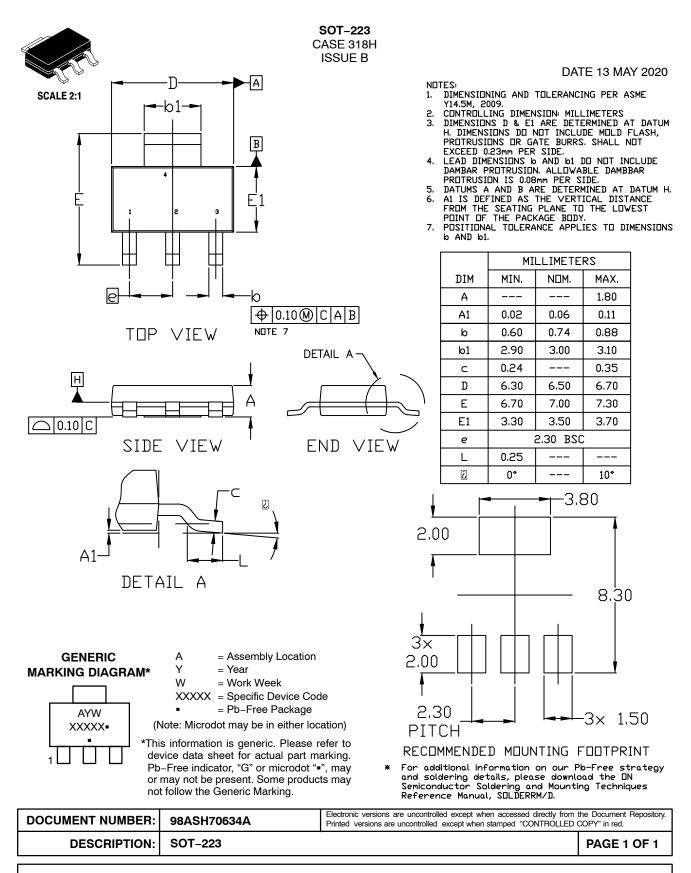


Figure 14. Junction-to-Ambient Transient Thermal Response Curve

ORDERING INFORMATION


Device	Device Marking	Package Type	Shipping [†]
FDT86102LZ	102LZ	SOT-223 (Pb-Free)	4000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

onsemi

PACKAGE DIMENSIONS

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>