onsemi

MOSFET – N-Channel, POWERTRENCH[®]

100 V, 67 A, 8.5 m Ω

FDPF045N10A

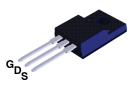
Description

This N–Channel MOSFET is Produced using **onsemi**'s advanced PowerTrench Process that has been tailored to minimize the on–state resistance while maintaining superior switching performance.

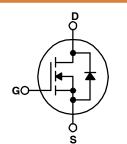
Features

- $R_{DS(on)} = 3.7 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 67 \text{ A}$
- Fast Switching Speed
- Low Gate Charge, Qg = 57 nC (Typ.)
- High Performance Trench Technology for Extremely Low R_{DS(on)}
- High Power and Current Handling Capability
- This Device is Pb-Free Halide, Free and RoHS Compliant

Applications


- Synchronous Rectification for ATX / Sever / Telecom PSU
- Motor Drives and Uninterruptible Power Supplies
- Micro Solar Inverter

ABSOLUTE MAXIMUM RATINGS


 $(T_C = 25^{\circ}C \text{ unless otherwise noted.})$

Symbol	Parameter	Value	Unit
V _{DSS}	Drain to Source Voltage	100	V
V _{GSS}	Gate to Source Voltage	±20	V
۱ _D	Drain Current – Continuous (T _C = 25°C) – Continuous (T _C = 100°C)	67 47	A
I _{DM}	Drain Current – Pulsed (Note 1)	268	А
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	637	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)	6.0	V/ns
PD	Power Dissipation – (T _C = 25°C) – Derate Above 25°C	43 0.29	W W/°C
T _J ,T _{STG}	Operating and Storage Temperature Range	-55 to +175	°C
TL	Maximum Lead Temperature for 3 Soldering Purpose, 1/8" from Case for 5 Seconds		°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

TO-220F CASE 221AT

MARKING DIAGRAM

FDPF045N10A	= Specific Device Code
Α	= Assembly Location
YWW	= Date Code (Year and Week)
ZZ	= Assembly Lot Code

ORDERING INFORMATION

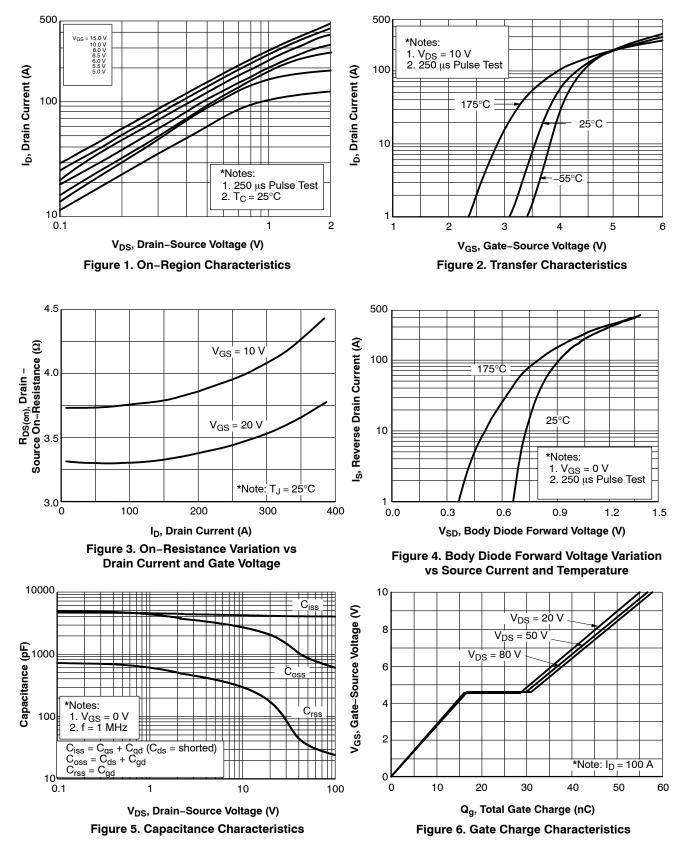
Device	Package	Shipping
FDPF045N10A	TO-220-3 FullPack	1000 Units / Tube

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

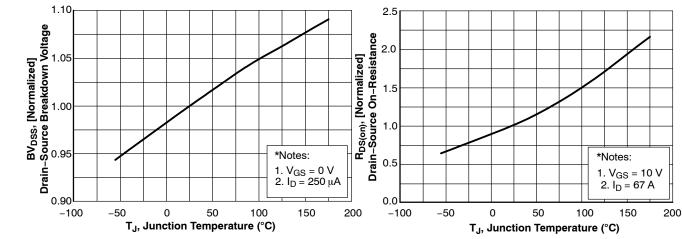
THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	3.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

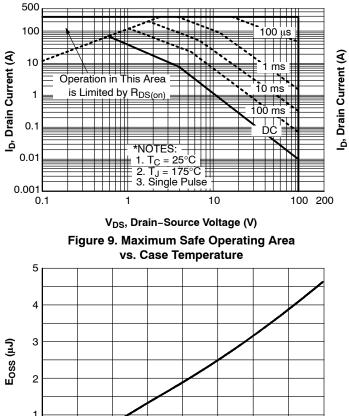

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Charac	teristics				•	
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	100	_	-	V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25° C	_	0.06	_	V/∘C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V	-	-	1	μΑ
		$V_{DS} = 80 \text{ V}, \text{ T}_{C} = 150^{\circ}\text{C}$	-	-	500	
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA
On Charac	teristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$	2.0	_	4.0	V
R _{DS(on)}	Static Drain to Source On-Resistance	V _{GS} = 10 V, I _D = 67 A	-	3.7	4.5	mΩ
9 FS	Forward Transconductance	V _{DS} = 10 V, I _D = 67 A	_	127	-	S
Dynamic O	Characteristics					
C _{iss}	Input Capacitance	V_{DS} = 50 V, V_{GS} = 0 V, f = 1 MHz	-	3961	5270	pF
Coss	Output Capacitance		_	925	1230	pF
C _{rss}	Reverse Transfer Capacitance		_	34	-	pF
C _{oss} (er)	Engry Related Output Capacitance	$V_{DS} = 50 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	_	1521	-	pF
Q _{g(tot)}	Total Gate Charge at 10 V	V_{GS} = 10 V, V_{DS} = 50 V, I_D = 100 A	-	57	74	nC
Q _{gs}	Gate to Source Gate Charge		_	17	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		-	8	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	13	-	nC
ESR	Equivalent Series Resistance (G-S)	f = 1 MHz	_	1.9	-	Ω
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 100 \text{ A},$	-	23	56	ns
t _r	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 4.7 \Omega \text{ (Note 4)}$	_	26	62	ns
t _{d(off)}	Turn-Off Delay Time		-	50	110	ns
t _f	Turn-Off Fall Time		_	15	40	ns
Drain-Sou	rce Diode Characteristics and Maximum	Ratings				
IS	Maximum Continuous Drain to Source Diode Forward Current		-	-	67	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		_	_	268	А
V _{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0 V, I_{SD} = 67 A$	-	-	1.3	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, V_{DD} = 50 V, I_{SD} = 100 A,$	-	75	-	ns
Q _{rr}	Reverse Recovery Charge	$dI_{F}/dt = 100 \text{ Å}/\mu\text{s}$	-	120	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


NOTES:

1. Repetitive Rating: Pulse-width limited by maximum junction temperature. 2. L = 3 mH, I_{AS} = 20.6 A, R_G = 25 Ω starting T_J = 25°C. 3. $I_{SD} \le 100$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le BV_{DSS}$, starting T_J = 25°C. 4. Essentially independent of operating temperature.

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS (CONTINUED)

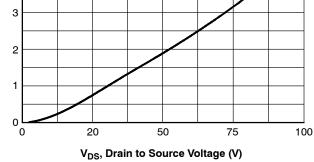


Figure 11. Eoss vs. Drain to Source Voltage

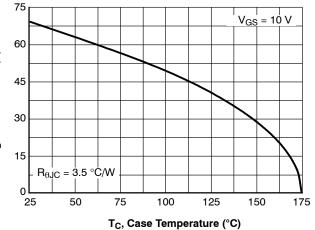
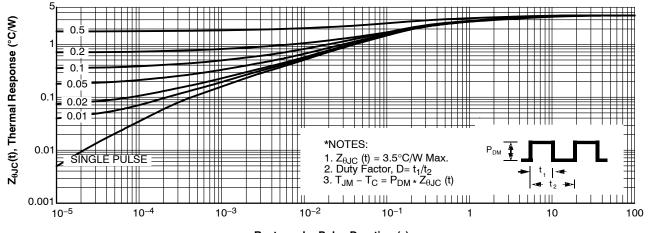
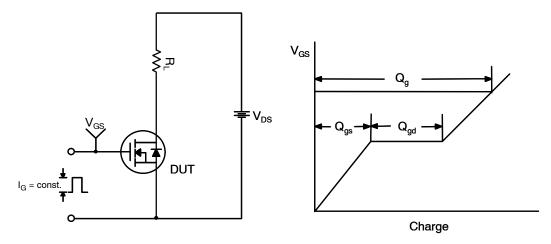




Figure 10. Maximum Drain Current

TYPICAL CHARACTERISTICS (CONTINUED)

Rectangular Pulse Duration (s) Figure 12. Transient Thermal Response Curve

Figure 13. Gate Charge Test Circuit & Waveform

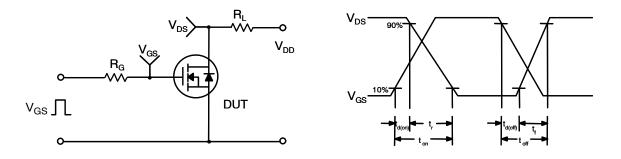


Figure 14. Resistive Switching Test Circuit & Waveforms

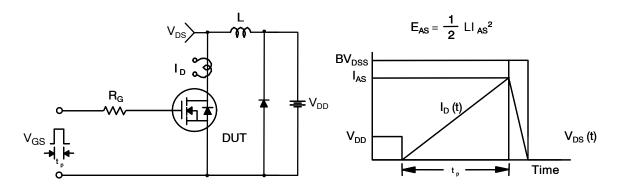
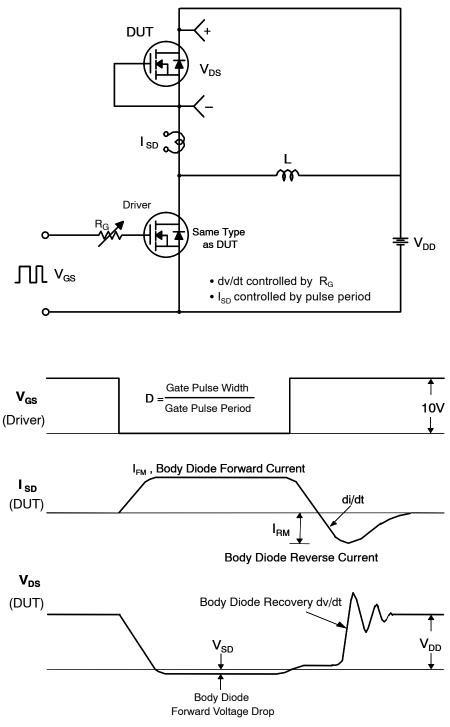
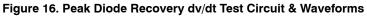
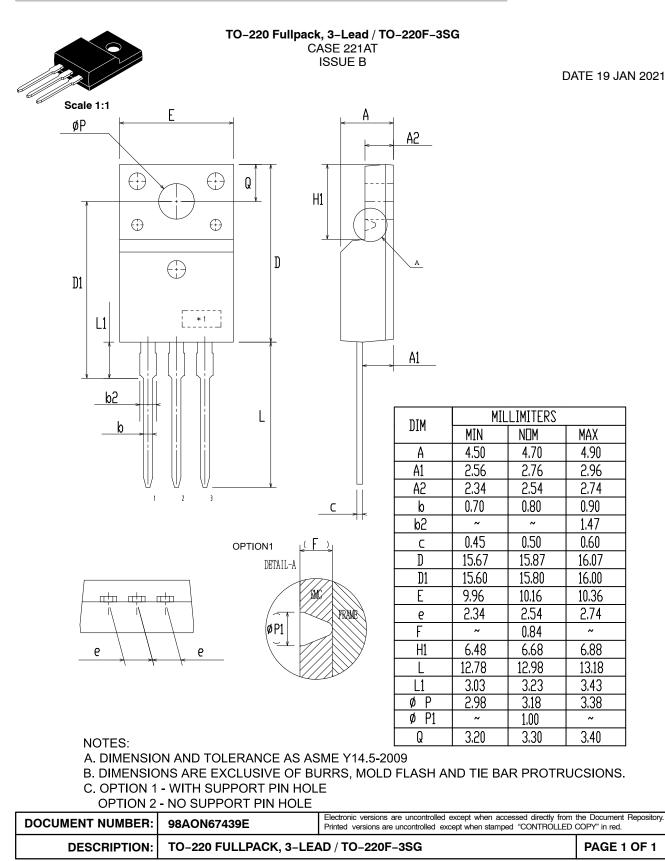





Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>