To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any device intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
FDP8896
N-Channel PowerTrench® MOSFET
30V, 92A, 5.9mΩ

General Description
This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(ON)}$ and fast switching speed.

Applications
• DC/DC converters

Features
• $r_{DS(ON)} = 5.9\text{mΩ}$, $V_{GS} = 10\text{V}$, $I_D = 35\text{A}$
• $r_{DS(ON)} = 7.0\text{mΩ}$, $V_{GS} = 4.5\text{V}$, $I_D = 35\text{A}$
• High performance trench technology for extremely low $r_{DS(ON)}$
• Low gate charge
• High power and current handling capability
• RoHS Compliant

MOSFET Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DSS}</td>
<td>Drain to Source Voltage</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>Gate to Source Voltage</td>
<td>±20</td>
<td>V</td>
</tr>
</tbody>
</table>
| I_D | Drain Current
 Continuous ($T_C = 25^\circ\text{C}$, $V_{GS} = 10\text{V}$) (Note 1) | 92 | A |
 Continuous ($T_C = 25^\circ\text{C}$, $V_{GS} = 4.5\text{V}$) (Note 1) | 85 | A |
 Continuous ($T_{amb} = 25^\circ\text{C}$, $V_{GS} = 10\text{V}$, with $R_{\theta JA} = 62^\circ\text{C/W}$) | 16 | A |
| E_{AS} | Single Pulse Avalanche Energy (Note 2) | 74 | mJ |
| P_D | Power dissipation | 80 | W |
| T_J, T_{STG} | Operating and Storage Temperature | -55 to 175 | °C |

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\theta JC}$</td>
<td>Thermal Resistance Junction to Case TO-220</td>
<td>1.88</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\theta JA}$</td>
<td>Thermal Resistance Junction to Ambient TO-220 (Note 3)</td>
<td>62</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Device Marking</th>
<th>Device</th>
<th>Package</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP8896</td>
<td>FDP8896</td>
<td>TO-220AB</td>
<td>Tube</td>
<td>N/A</td>
<td>50 units</td>
</tr>
</tbody>
</table>
Electrical Characteristics \(T_C = 25^\circ C \) unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_{VDSS})</td>
<td>Drain to Source Breakdown Voltage</td>
<td>(I_D = 250\mu A, V_{GS} = 0V)</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>(I_{DSS})</td>
<td>Zero Gate Voltage Drain Current</td>
<td>(V_{GS} = 24V)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{GS} = 0V)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_C = 150^\circ C)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{GS})</td>
<td>Gate to Source Leakage Current</td>
<td>(V_{GS} = \pm 20V)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(nA)</td>
</tr>
</tbody>
</table>

Off Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{GS(TH)})</td>
<td>Gate to Source Threshold Voltage</td>
<td>(V_{GS} = V_{DS}, I_D = 250\mu A)</td>
<td>1.2</td>
<td>-</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>(f_{DS(ON)})</td>
<td>Drain to Source On Resistance</td>
<td>(I_D = 35A, V_{GS} = 10V)</td>
<td>-</td>
<td>0.0050</td>
<td>0.0059</td>
<td>(\Omega)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_D = 35A, V_{GS} = 4.5V)</td>
<td>-</td>
<td>0.0060</td>
<td>0.0070</td>
<td>(\Omega)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_D = 35A, V_{GS} = 10V, T_J = 175^\circ C)</td>
<td>-</td>
<td>0.0078</td>
<td>0.0094</td>
<td>(\Omega)</td>
</tr>
</tbody>
</table>

Dynamic Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{ISS})</td>
<td>Input Capacitance</td>
<td>(V_{DS} = 15V, V_{GS} = 0V)</td>
<td>-</td>
<td>-</td>
<td>2525</td>
<td>(\mu F)</td>
</tr>
<tr>
<td>(C_{DSS})</td>
<td>Output Capacitance</td>
<td>(f = 1MHz)</td>
<td>-</td>
<td>-</td>
<td>490</td>
<td>(\mu F)</td>
</tr>
<tr>
<td>(C_{RSS})</td>
<td>Reverse Transfer Capacitance</td>
<td>-</td>
<td>-</td>
<td>300</td>
<td>(\mu F)</td>
<td></td>
</tr>
<tr>
<td>(R_G)</td>
<td>Gate Resistance</td>
<td>(V_{GS} = 0.5V, f = 1MHz)</td>
<td>-</td>
<td>-</td>
<td>2.3</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(Q_{g(TOT)})</td>
<td>Total Gate Charge at 10V</td>
<td>(V_{GS} = 0V) to 10V</td>
<td>-</td>
<td>48</td>
<td>67</td>
<td>(nC)</td>
</tr>
<tr>
<td>(Q_{g(5)})</td>
<td>Total Gate Charge at 5V</td>
<td>(V_{GS} = 0V) to 5V</td>
<td>-</td>
<td>25</td>
<td>36</td>
<td>(nC)</td>
</tr>
<tr>
<td>(Q_{g(TH)})</td>
<td>Threshold Gate Charge</td>
<td>(V_{GS} = 0V) to 1V</td>
<td>-</td>
<td>2.3</td>
<td>3.0</td>
<td>(nC)</td>
</tr>
<tr>
<td>(Q_{gs})</td>
<td>Gate to Source Gate Charge</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>(nC)</td>
<td></td>
</tr>
<tr>
<td>(Q_{gs2})</td>
<td>Gate Charge Threshold to Plateau</td>
<td>-</td>
<td>-</td>
<td>5.7</td>
<td>(nC)</td>
<td></td>
</tr>
<tr>
<td>(Q_{gd})</td>
<td>Gate to Drain “Miller” Charge</td>
<td>-</td>
<td>-</td>
<td>9.5</td>
<td>(nC)</td>
<td></td>
</tr>
</tbody>
</table>

Switching Characteristics \((V_{GS} = 10V) \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{ON})</td>
<td>Turn-On Time</td>
<td>(V_{DD} = 15V, I_D = 35A)</td>
<td>-</td>
<td>-</td>
<td>168</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{ON})</td>
<td>Turn-On Delay Time</td>
<td>(V_{DD} = 15V, I_D = 35A)</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(r)</td>
<td>Rise Time</td>
<td>(V_{GS} = 4.5V, R_{GS} = 6.2\Omega)</td>
<td>-</td>
<td>103</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{OFF})</td>
<td>Turn-Off Delay Time</td>
<td>(V_{GS} = 4.5V, R_{GS} = 6.2\Omega)</td>
<td>-</td>
<td>56</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(f)</td>
<td>Fall Time</td>
<td>-</td>
<td>-</td>
<td>44</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{OFF})</td>
<td>Turn-Off Time</td>
<td>-</td>
<td>-</td>
<td>150</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Drain-Source Diode Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{SD})</td>
<td>Source to Drain Diode Voltage</td>
<td>(I_{SD} = 35A)</td>
<td>-</td>
<td>-</td>
<td>1.25</td>
<td>V</td>
</tr>
<tr>
<td>(I_{f})</td>
<td>Reverse Recovery Time</td>
<td>(I_{SD} = 35A, dI_{SD}/dt = 100A/\mu s)</td>
<td>-</td>
<td>-</td>
<td>27</td>
<td>(\mu C)</td>
</tr>
<tr>
<td>(Q_{RR})</td>
<td>Reverse Recovered Charge</td>
<td>(I_{SD} = 35A, dI_{SD}/dt = 100A/\mu s)</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>(\mu C)</td>
</tr>
</tbody>
</table>

Notes:
1. Package current limitation is 80A.
2. Starting \(T_J = 25^\circ C, L = 36\mu H, I_G = 64A, V_{DD} = 27V, V_{GS} = 10V \).
3. Pulse width = 100s.
Typical Characteristics $T_C = 25^\circ C$ unless otherwise noted

![Normalized Power Dissipation vs Case Temperature](image1)

![Maximum Continuous Drain Current vs Case Temperature](image2)

![Normalized Maximum Transient Thermal Impedance](image3)

![Peak Current Capability](image4)

Figure 1. Normalized Power Dissipation vs Case Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability
Typical Characteristics $T_C = 25^\circ\text{C}$ unless otherwise noted

Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching Capability

Figure 7. Transfer Characteristics

Figure 8. Saturation Characteristics

Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature
Typical Characteristics $T_C = 25^\circ C$ unless otherwise noted

Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

Figure 13. Capacitance vs Drain to Source Voltage

Figure 14. Gate Charge Waveforms for Constant Gate Current
PSPICE Electrical Model

.SUBCKT FDP8896 2 1 3 ; rev November 2003

Ca 12 8 2.3e-9
Cb 15 14 2.3e-9
Cin 6 8 2.3e-9

Dbody 7 5 DbodyMOD
Dbreak 5 11 DbreakMOD
Dplcap 10 5 DplcapMOD

Ebody 11 7 17 18 33
Eds 14 8 5 8 1
Egs 13 8 8 6 1
Evthres 6 21 19 8 1
Evtemp 20 6 18 22 1

It 8 17 1

Lgate 1 9 5.5e-9
Ldrain 2 5 1.0e-9
Lsource 3 7 2.7e-9

RLgate 1 9 55
RLdrain 2 5 10
RLsource 3 7 27

Mmed 16 6 8 8 MmedMOD
Mstro 16 6 8 8 MstroMOD
Mweak 16 21 8 8 MweakMOD

Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 2.3e-3
Rgate 9 20 2.3
RSCL 5 51 RSCLMOD 1e-6
RSCL2 5 50 1e-3
Rsource 8 7 RsourceMOD 2e-3
Rvthres 22 18 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1

S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 15 14 13 8 S2BMOD

Vbat 22 19 DC 1

ESLC 51 50 VALUE=\{V/(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))\}

.MODEL DbodayMOD D (IS=4E-12 IKF=10 N=1.01 RS=2.6e-3 TRS=8e-4 TRS2=2e-7 + CJO=8.8e-10 M=0.57 TT=1e-16 XTI=2.2)

.MODEL DbreakMOD D (RS=8e-2 TRS=1e-3 TRS2=-8.9e-6)

.MODEL DplcapMOD D (CJO=9.4e-10 IS=1e-30 N=10 M=0.4)

.MODEL MmedMOD NMOS (VTO=1.98 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.3 T_ABS=25)

.MODEL MstroMOD NMOS (VTO=2.4 KP=350 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25)

.MODEL MweakMOD NMOS (VTO=1.68 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=23 RS=0.1 T_ABS=25)

.MODEL RbreakMOD RES (TC=1=8.3e-4 TC2=4e-7)

.MODEL RdrainMOD RES (TC=1=1e-3 TC2=8e-6)

.MODEL RSCLMOD RES (TC=1=9e-4 TC2=1e-6)

.MODEL RsourceMOD RES (TC=1=7.5e-3 TC2=1e-6)

.MODEL RvthresMOD RES (TC=1=2.4e-3 TC2=8.8e-6)

.MODEL RvtempMOD RES (TC=1=2.8e-3 TC2=2e-7)

.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3)

.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3 VOFF=-4)

.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-0.5)

.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-2)

.ENDS

SABER Electrical Model

rev November 2003
template FDP8896 n2,n1,n3 = m_temp
electrical n2,n1,n3
number m_temp=25
{
var i iscl
dp..model dbodymod = (isl=4e-12,ikf=10,ni=1.01,rs=2.6e-3,trs1=8e-4,trs2=2e-7,cjo=8.8e-10,m=0.57,tt=1e-16,xti=2.2)
dp..model dbreakmod = (cjo=9.4e-10,isl=10e-30,ni=10,m=0.4)
m..model mmedmod = (type=_n,vto=1.98,kp=10,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=2.4,kp=350,ie=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=1.68,kp=0.05,is=1e-30, tox=1)
sw_vcsps.model s1amod = (ron=1e-5,roff=0.1, von=3, voff=-4)
sw_vcsps.model s2amod = (ron=1e-5,roff=0.1, von=2, voff=-0.5)
sw_vcsps.model s2bmod = (ron=1e-5,roff=0.1, von=0.5, voff=-2)
c.ca n12 n8 = 2.3e-9
c.cb n15 n14 = 2.3e-9
c.cin n6 n8 = 2.3e-9
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17 n18 = 33
spe.eds n14 n8 n5 = 1
spe.egs n3 n8 n6 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1
l.lgate n1 n9 = 5.5e-9
l.ldrain n2 n5 = 1.0e-9
l.lsouce n3 n7 = 2.7e-9
res.rigate n1 n9 = 55
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 27
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp
res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=4e-7
res.rdrain n50 n16 = 2.3e-3,tc1=1e-3,tc2=8e-6
res.rigate n9 n20 = 2.3
res.rslc1 n5 n51 = 1e-6,tc1=9e-4,tc2=1e-6
res.rslc2 n50 n51 = 1e6
res.rlsource n8 n7 = 2e-3,tc1=7.5e-3,tc2=2e-6
res.rvthres n18 n19 = 1, tc1=2.4e-3,tc2=8.8e-6
res.rvtemp n18 n19 = 1, tc1=2.6e-3,tc2=2e-7
sw_vcsps.model s1a n6 n12 n13 n8 = model=s1amod
sw_vcsps.model s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsps.model s2a n15 n14 n13 = model=s2amod
sw_vcsps.model s2b n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
 i (n51->n50) + iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*(abs(v(n5,n51)*1e6/500))** 10))
}
}
PSPICE Thermal Model

REV 23 November 2003

FDP8896T

CTHERM1 TH 6 9e-4
CTHERM2 6 5 1e-3
CTHERM3 5 4 2e-3
CTHERM4 4 3 3e-3
CTHERM5 3 2 7e-3
CTHERM6 2 TL 8e-2

RTHERM1 TH 6 3.0e-2
RTHERM2 6 5 1.0e-1
RTHERM3 5 4 1.8e-1
RTHERM4 4 3 2.8e-1
RTHERM5 3 2 4.5e-1
RTHERM6 2 TL 4.6e-1

SABER Thermal Model

SABER thermal model FDP8896T
template thermal_model th tl
thermal_c th, tl
{
 ctherm.ctherm1 th 6 =9e-4
ctherm.ctherm2 6 5 =1e-3
ctherm.ctherm3 5 4 =2e-3
ctherm.ctherm4 4 3 =3e-3
ctherm.ctherm5 3 2 =7e-3
ctherm.ctherm6 2 tl =8e-2
 rtherm.rtherm1 th 6 =3.0e-2
 rtherm.rtherm2 6 5 =1.0e-1
 rtherm.rtherm3 5 4 =1.8e-1
 rtherm.rtherm4 4 3 =2.8e-1
 rtherm.rtherm5 3 2 =4.5e-1
 rtherm.rtherm6 2 tl =4.6e-1
}
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx®, Build it Now™, CorePLUS™, CorePOWER™, CROSSVOLT™, CTL™, Current Transfer Logic™, EcoSPARK®, EfficientMax™, EZSWITCH™ *

Faicnhild®, Fairchild Semiconductor®, FACT Quiet Series™, FACT®, FAST®, FastvCore™, FlashWriter® *

ACEx® FPS™ F-PFS™ FRFET® Global Power Resources℠ Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP-SPM™ Power-SPM™ PowerTrench® Programmable Active Droop™ OFET® QS™ Quiet Series™ RapidConfigure™ Saving our world 1mW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™3 SuperSOT™6 SuperSOT™8 SuperMOS™

The Power Franchise®

TinyBoost™, TinyBuck™, TinyLogic®, TINYOPTO™, TinyPower™, TinyPWM™, TinyWire™, µSerDes™, UHC®, Ultra FRFET™, UniFET™, VCX™, VisualMax™

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

Rev. 134

@2008 Fairchild Semiconductor Corporation FDP8896 Rev A2