

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

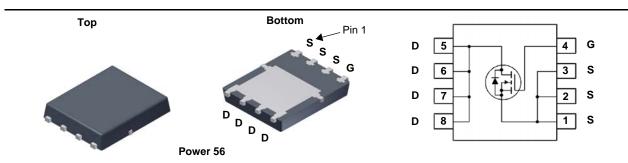
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

N-Channel PowerTrench[®] MOSFET 30 V, 6.3 m Ω

Features

- Max $r_{DS(on)} = 6.3 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 14 \text{ A}$
- Max $r_{DS(on)}$ = 10.4 m Ω at V_{GS} = 4.5 V, I_D = 11 A
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- Next generation enhanced body diode technology, engineered for soft recovery
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant



General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency and to minimize switch node ringing of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$, fast switching speed and body diode reverse recovery performance.

Applications

- IMVP Vcore Switching for Notebook
- VRM Vcore Switching for Desktop and server
- OringFET / Load Switching
- DC-DC Conversion

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage	30	V			
V _{DSt}	Drain to Source Transient Voltage (t _{Transient} < 100 ns)			33	V	
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V	
	Drain Current -Continuous (Package limited)	T _C = 25 °C		22		
	-Continuous (Silicon limited)	T _C = 25 °C		59	A	
D	-Continuous	T _A = 25 °C	(Note 1a)	16	A	
	-Pulsed			80		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	29	mJ	
P _D	Power Dissipation	T _C = 25 °C		33	w	
	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case		3.7	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (No	te 1a)	50	0/10

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS7682	FDMS7682	Power 56	13 "	12 mm	3000 units

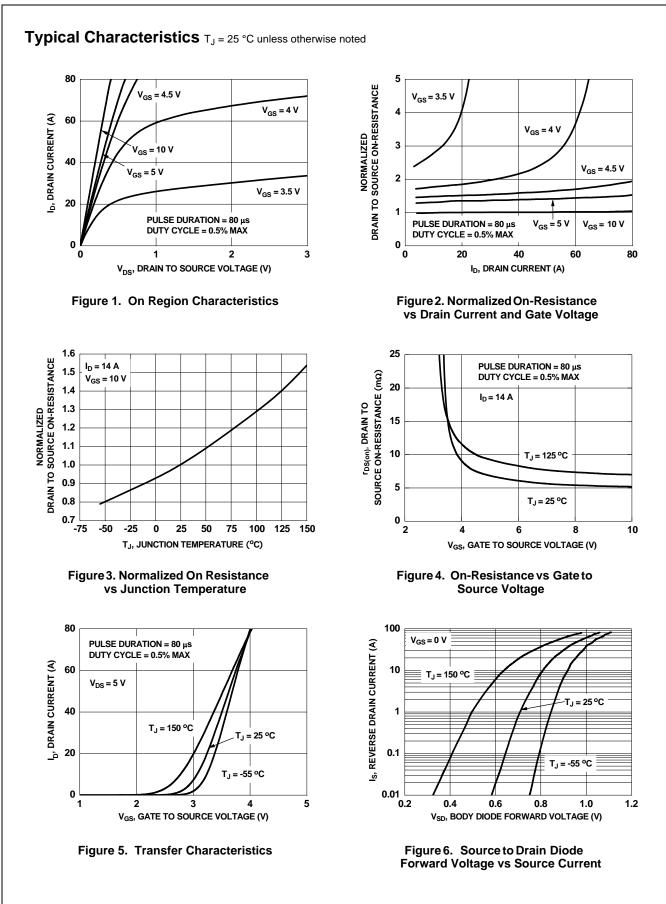
January 2015

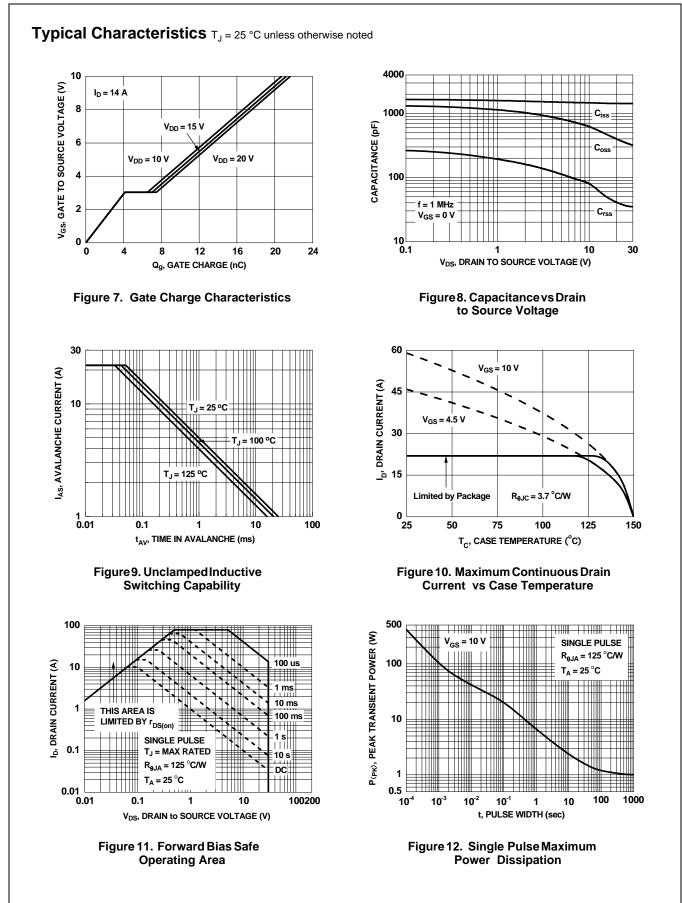
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = 250 \ \mu A, \ V_{GS} = 0 \ V$	30			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		15		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μA
GSS	Gate to Source Leakage Current, Forward	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	1.25	1.9	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		-6		mV/°C
		V _{GS} = 10 V, I _D = 14 A		5.2	6.3	
^r DS(on)	Static Drain to Source On Resistance	V _{GS} = 4.5 V, I _D = 11 A		8.0	10.4	mΩ
		V _{GS} = 10 V, I _D = 14 A, T _J = 125 °C		7.0	8.5	
a	Forward Transconductance	V _{DS} = 5 V, I _D = 14 A		70		0
9fs	l ofward Hansoonddolahoo	$v_{\rm DS} = 5 v, i_{\rm D} = 14 A$		70		S
Dynamic C _{iss}	Characteristics			1416	1885	pF
Dynamic C _{iss} C _{oss}	Characteristics	V _{DS} = 15 V, V _{GS} = 0 V,			1885 640	
Dynamic C _{iss} C _{oss} C _{rss}	Characteristics Input Capacitance			1416		pF
Dynamic C _{iss} C _{oss} C _{rss}	Characteristics Input Capacitance Output Capacitance	V _{DS} = 15 V, V _{GS} = 0 V,		1416 479	640	pF pF
Dynamic C _{iss} C _{oss} C _{rss} R _g	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 15 V, V _{GS} = 0 V,		1416 479 50	640 75	pF pF pF
Dynamic (C _{iss} C _{oss} C _{rss} Rg Switching	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance	V _{DS} = 15 V, V _{GS} = 0 V,		1416 479 50	640 75	pF pF pF
Dynamic Criss Coss Criss Rg Switching	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics	V _{DS} = 15 V, V _{GS} = 0 V,		1416 479 50 0.7	640 75 2.4	pF pF pF Ω
Dynamic C _{iss} C _{oss} C _{rss} R _g Switching	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz		1416 479 50 0.7 9.4	640 75 2.4 19	pF pF pF Ω ns
Dynamic (C _{iss} C _{oss} C _{rss} R _g Switching	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz $V_{DD} = 15 \text{ V}, \text{ I}_{D} = 14 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		1416 479 50 0.7 9.4 2.7	640 75 2.4 19 10	pF pF pF Ω ns
Dynamic (Criss Cr	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz $V_{DD} = 15 \text{ V}, \text{ I}_{D} = 14 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$		1416 479 50 0.7 9.4 2.7 22	640 75 2.4 19 10 35	pF pF pF Ω ns ns
Dynamic (Ciss Coss Crss Rg d(on) r d(off) f Ag	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz $V_{DD} = 15 \text{ V}, \text{ I}_{D} = 14 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 15 \text{ V},$		1416 479 50 0.7 9.4 2.7 22 2.2	640 75 2.4 19 10 35 10	pF pF Ω ns ns ns ns
Dynamic C _{iss} C _{oss} C _{rss} R _g	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz $V_{DD} = 15 \text{ V}, \text{ I}_{D} = 14 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		1416 479 50 0.7 9.4 2.7 22 2.2 2.2 21	640 75 2.4 19 10 35 10 30	pF pF Ω ns ns ns ns nc

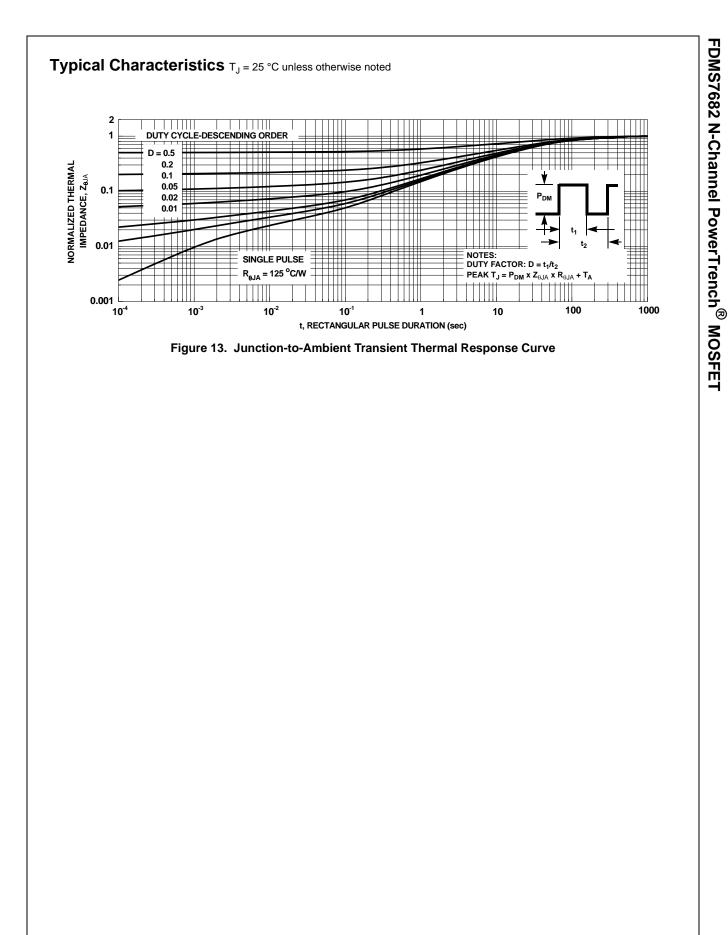
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 2.1 A$	(Note 2)	0.74	1.2	V
	Source to Drain Diode Forward voltage	$V_{GS} = 0 V, I_{S} = 14 A$	(Note 2)	0.83	1.3	v
t _{rr}	Reverse Recovery Time			27	43	ns
Q _{rr}	Reverse Recovery Charge	$I_{F} = 14 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		10	21	nC
t _{rr}	Reverse Recovery Time	I _F = 14 A, di/dt = 300 A/μs		20	36	ns
Q _{rr}	Reverse Recovery Charge			17	30	nC

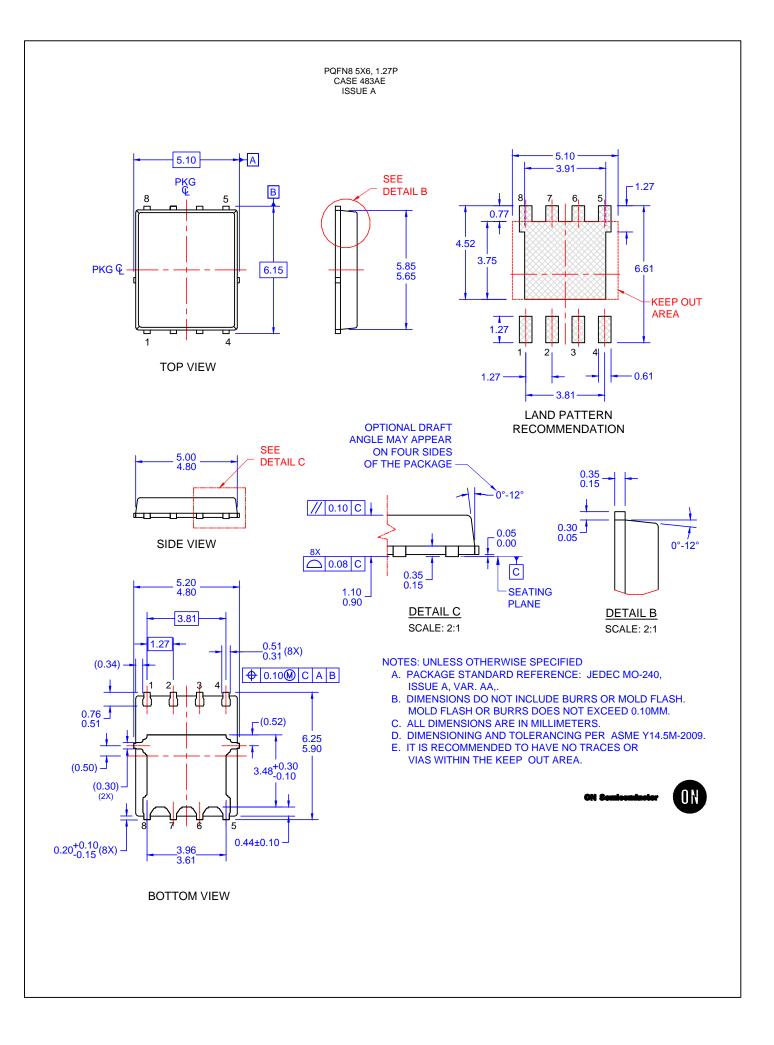
Notes: 1. R_{8JA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design.

a) 50 °C/W when mounted on a 1 in² pad of 2 oz copper


b) 125 °C/W when mounted on a minimum pad of 2 oz copper.


2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. E_{AS} of 29 mJ is based on starting T_J = 25 °C, L = 0.3 mH, I_{AS} = 14 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 21 A.


4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.


FDMS7682 N-Channel PowerTrench[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC