PowerTrench[®] Power Clip

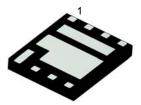
25 V Asymmetric Dual N–Channel MOSFET

General Description

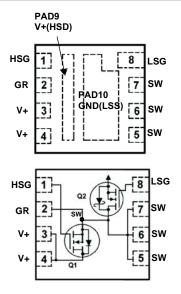
This device includes two specialized N–Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFET (Q2) have been designed to provide optimal power efficiency.

Features

- Q1: N-Channel
- Max $r_{DS(on)} = 3.25 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 19 \text{ A}$
- Max $r_{DS(on)} = 4 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 17 \text{ A}$ Q2: N-Channel
- Max $r_{DS(on)} = 0.92 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 38 \text{ A}$
- Max $r_{DS(on)} = 1.20 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 34 \text{ A}$
- Low Inductance Packaging Shortens Rise/Fall Times, Resulting in Lower Switching Losses
- MOSFET Integration Enables Optimum Layout for Lower Circuit Inductance and Reduced Switch Node Ringing
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


Applications

- Computing
- Communications
- General Purpose Point of Load



ON Semiconductor®

www.onsemi.com

PQFN8 POWER CLIP CASE 483AR

PIN ASSIGNMENT

Pin	Name	Description
1	HSG	High Side Gate
2	GR	Gate Return
3,4,9	V+(HSD)	High Side Drain
5,6,7	SW	Switching Node, Low Side Drain
8	LSG	Low Side Gate
10	GND(LSS)	Low Side Source

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

Table 1. MAXIMUM RATINGS T_A = 25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DS}	Drain to Source Voltage		25 (Note 1)	25	V
V _{GS}	Gate to Source Voltage		+16/–12V	+16/–12V	V
Ι _D	Drain Current –Continuous	T _C = 25°C (Note 2)	69	165	А
	-Continuous	T _C = 100°C (Note 2)	43	104	
	-Continuous	$T_A = 25^{\circ}C$	19 (Note 7a)	38 (Note 7b)	
	-Pulsed	T _A = 25°C (Note 3)	381	1240	
E _{AS}	Single Pulse Avalanche Energy	(Note 4)	121	337	mJ
PD	Power Dissipation for Single Operation	$T_C = 25^{\circ}C$	26	42	W
	Power Dissipation for Single Operation	$T_A = 25^{\circ}C$	2.1 (Note 7a)	2.3 (Note 7b)	1
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150		°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The continuous V_{DS} rating is 25 V; However, a pulse of 30 V peak voltage for no longer than 100 ns duration at 600 KHz frequency can be

applied. 2. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

Pulsed Id please refer to Figure 11 and Figure 24 SOA graphs for more details.
 Q1: E_{AS} of 121 mJ is based on starting T_J = 25°C; N-ch: L = 3 mH, I_{AS} = 9 A, V_{DD} = 25 V. 100% tested at L = 0.1 mH, I_{AS} = 29 A. Q2: E_{AS} of 337 mJ is based on starting T_J = 25°C; N-ch: L = 3 mH, I_{AS} = 15 A, V_{DD} = 25 V. 100% tested at L = 0.1 mH, I_{AS} = 48 A.

Table 2. THERMAL CHARACTERISTICS

Symbol	Parameter	Q1	Q2	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case	4.9	3.0	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	60 (Note 7a)	55 (Note 7b)	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	130 (Note 7c)	120 (Note 7d)	

Table 3. ELECTRICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 1 \text{ mA}, \text{ V}_{GS} = 0 \text{ V}$ $I_D = 1 \text{ mA}, \text{ V}_{GS} = 0 \text{ V}$	Q1 Q2	25 25			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = 10 mA, referenced to 25°C I_D = 10 mA, referenced to 25°C	Q1 Q2		15 28		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$	Q1 Q2			1 500	μΑ μΑ
I _{GSS}	Gate to Source Leakage Current	V_{GS} = +16 V/-12 V, V_{DS} = 0 V V_{GS} = +16 V/-12 V, V_{DS} = 0 V	Q1 Q2			±100 ±100	nA nA

ON CHARACTERISTICS

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 320 \ \mu A$ $V_{GS} = V_{DS}, I_D = 1 \ m A$	Q1 Q2	0.8 1.0	1.3 1.5	2.5 3.0	V
${\Delta V_{GS(th)} / \over \Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 1 mA, referenced to 25°C I_D = 10 mA, referenced to 25°C	Q1 Q2		-4 -3		mV/°C
r _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 19 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 17 \text{ A}$ $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 19 \text{ A}, \text{T}_{J} = 125^{\circ}\text{C}$	Q1		2.5 3.0 3.5	3.25 4.0 5.0	mΩ
			Q2		0.70 0.92 0.96	0.92 1.20 1.38	

Table 3. ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
ON CHARACTERISTICS							
9fs	Forward Transconductance	$V_{DS} = 5 V, I_D = 19 A$	Q1		98		S
		V _{DS} = 5 V, I _D = 38 A	Q2		262		

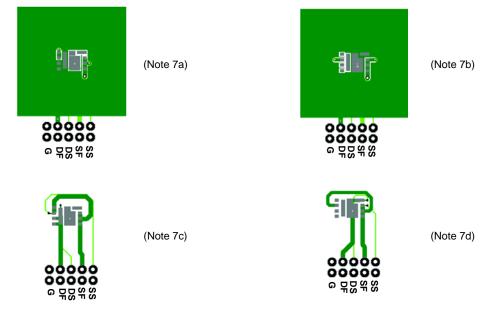
DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	Q1: V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		1370 5105		pF
C _{oss}	Output Capacitance	Q2: V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		625 1810		pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2		44 173		pF
Rg	Gate Resistance		Q1 Q2	0.1 0.1	0.4 0.3	1.2 1.0	Ω

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn–On Delay Time	Q1:		Q1	8	16	ns
		$V_{DD} = 13 \text{ V}, \text{ I}_{D}$	= 19 A, R _{GEN} = 6 Ω	Q2 Q1	15	26	
t _r	Rise Time	Q2: Vpp = 13 V lp	Q2: V _{DD} = 13 V, I _D = 38 A, R _{GEN} = 6 Ω		2 5	10 10	ns
t _{d(off)}	Turn–Off Delay Time	- UU - IU V, IU	- 00 M, HGEN - 0 11	Q1 Q2	22 39	34 62	ns
t _f	Fall Time				2 4	10 10	ns
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V	Q1 V _{DD} = 13 V, I _D = 19 A	Q1 Q2	21 75	30 104	nC
Qg	Total Gate Charge	V _{GS} = 0 V to 4.5 V	Q2 V _{DD} = 13 V, I _D = 38 A	Q1 Q2	9.7 35	14 49	nC
Q _{gs}	Gate to Source Gate Charge			Q1 Q2	2.9 12		nC
Q _{gd}	Gate to Drain "Miller" Charge			Q1 Q2	2.0 7.9		nC

DRAIN-SOURCE DIODE CHARACTERISTICS


V _{SD}	Source to Drain Diode Forward Volt- age	$V_{GS} = 0 V, I_S = 19 A (Note 6)$ $V_{GS} = 0 V, I_S = 38 A (Note 6)$	Q1 Q2	0.8 0.8	1.2 1.2	V
۱ _S	Diode continuous forward current	T _C = 25°C (Note 2)	Q1 Q2		69 125	A
I _{S,Pulse}	Diode pulse current	$T_{C} = 25^{\circ}C$ (Note 3)	Q1 Q2		381 1240	A
t _{rr}	Reverse Recovery Time	Q1 I _F = 19 A, di/dt = 100 A/µs	Q1 Q2	27 39	44 62	ns
Q _{rr}	Reverse Recovery Charge	Q2 I _F = 38 A, di/dt = 300 A/µs	Q1 Q2	12 55	21 87	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product

performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR–4 material. $R_{\theta CA}$ is determined by the user's board design.6. Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS001N025DSD	FDMS001N025DSD	Power Clip 56	13"	12 mm	3000 units

7. a) 60°C/W when mounted on a 1 in² pad of 2 oz copper
b) 55°C/W when mounted on a 1 in² pad of 2 oz copper
c) 130°C/W when mounted on a minimum pad of 2 oz copper
d) 120°C/W when mounted on a minimum pad of 2 oz copper

TYPICAL CHARACTERISTICS (Q1 N-Channel) $T_J = 25^{\circ}C$ unless otherwise noted

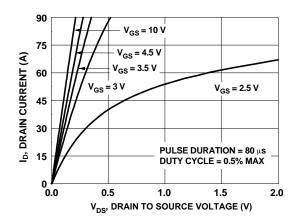
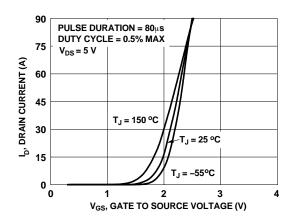



Figure 1. On Region Characteristics

Figure 3. Normalized On Resistance vs. Junction Temperature

Figure 5. Transfer Characteristics

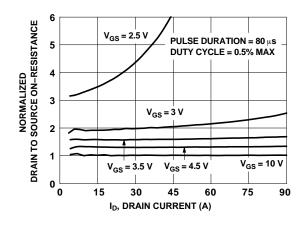


Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

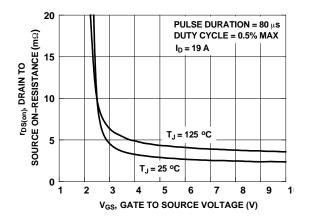
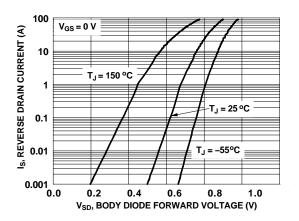



Figure 4. On–Resistance vs. Gate to Source Voltage

TYPICAL CHARACTERISTICS (Q1 N–Channel) $T_J = 25^{\circ}C$ unless otherwise noted

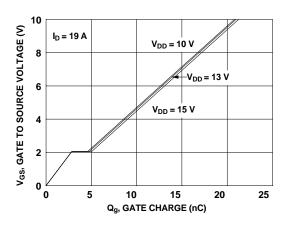


Figure 7. Gate Charge Characteristics

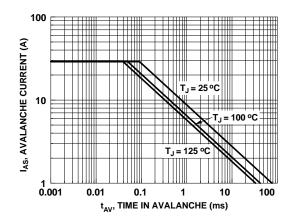


Figure 9. Unclamped Inductive Switching Capability

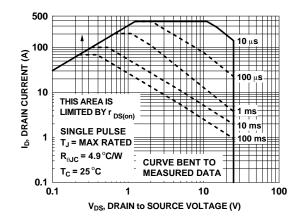


Figure 11. Forward Bias Safe Operating Area

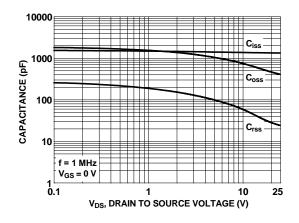
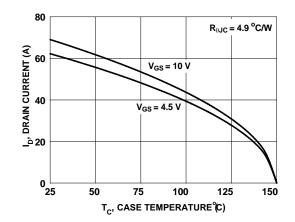
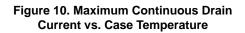




Figure 8. Capacitance vs. Drain to Source Voltage

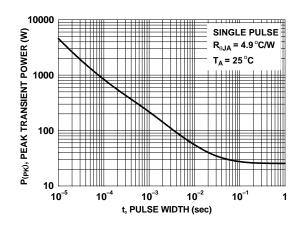


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q1 N-Channel) $T_J = 25^{\circ}C$ unless otherwise noted

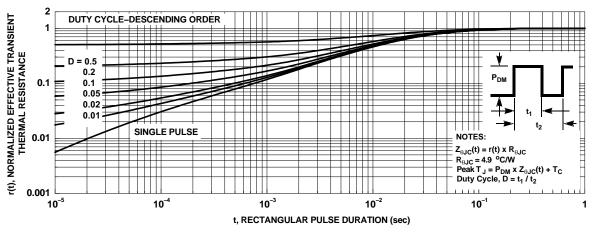


Figure 13. Junction-to-Case Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (Q2 N-Channel) $T_J = 25^{\circ}C$ unless otherwise noted

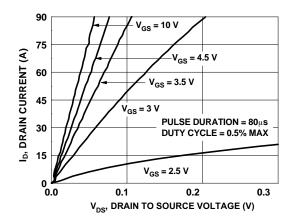
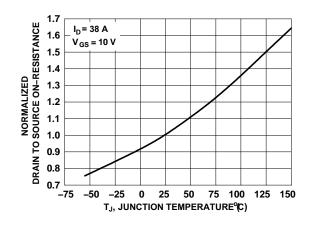



Figure 14. On Region Characteristics

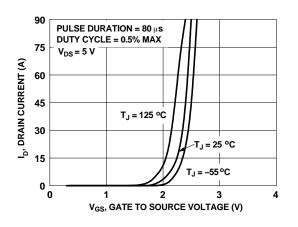


Figure 18. Transfer Characteristics

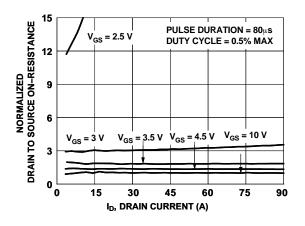


Figure 15. Normalized On–Resistance vs. Drain Current and Gate Voltage

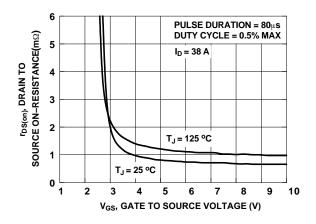


Figure 17. On–Resistance vs. Gate to Source Voltage

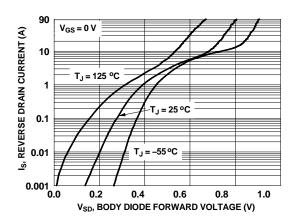


Figure 19. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (Q2 N–Channel) $T_J = 25^{\circ}C$ unless otherwise noted

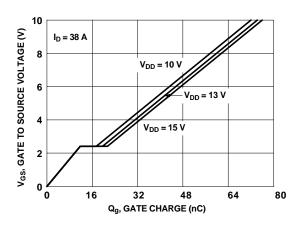


Figure 20. Gate Charge Characteristics



Figure 22. Unclamped Inductive Switching Capability

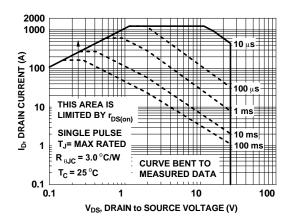


Figure 24. Forward Bias Safe Operating Area

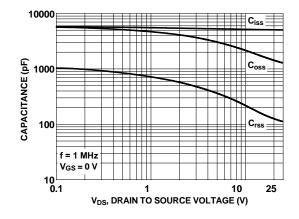


Figure 21. Capacitance vs. Drain to Source Voltage

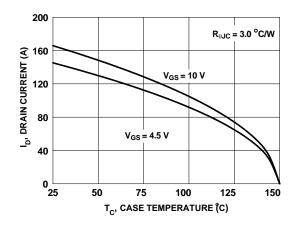


Figure 23. Maximum Continuous Drain Current vs. Case Temperature

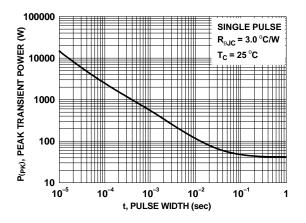


Figure 25. Single Pulse Maximum Power Dissipation

www.onsemi.com 9

TYPICAL CHARACTERISTICS (Q2 N-Channel) $T_J = 25^{\circ}C$ unless otherwise noted

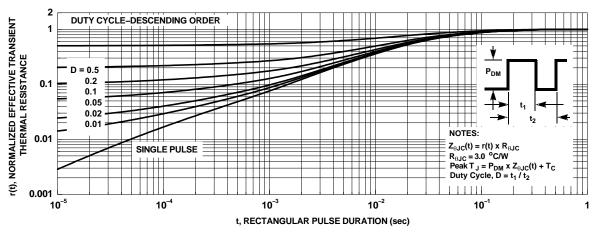


Figure 26. Junction-to-Case Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (continued)

ON Semiconductor's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverses recovery characteristic of the FDMS001N025DSD.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

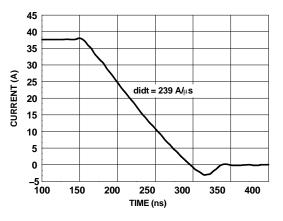


Figure 27. FDMS001N025DSD SyncFET Body Diode Reverse Recovery Characteristic

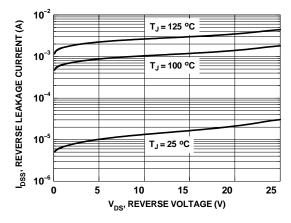
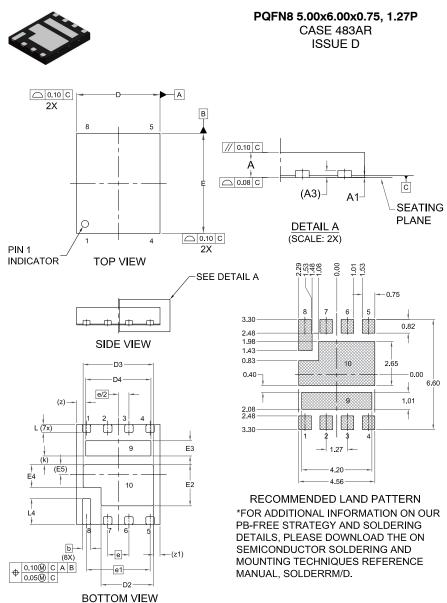



Figure 28. SyncFET Body Diode Reverse Leakage vs. Drain–Source Voltage

PowerTrench is a registered trademark of Semiconductor Components Industries, LLC.

onsemi

DATE 06 NOV 2023

NOTES: UNLESS OTHERWISE SPECIFIED

- A) DOES NOT FULLY CONFORM TO JEDEC REGISTRATION, MO-229, DATED 11/2001.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

DIM	N	IILLIMET	ERS				
	MIN.	NOM.	MAX.				
А	0.70	0.75	0.80				
A1	0.00	-	0.05				
A3	(.20 REF					
b	(0.51 BSC					
D	4.90	5.00	5.10				
D2	3.05	3.15	3.25				
D3	4.12	4.22	4.32				
D4	3.80	3.90	4.00				
Е	5.90	6.00	6.10				
E2	2.36	2.46	2.56				
E3	0.81	0.91	1.01				
E4	1.27	1.37	1.47				
E5		0.59 REF					
е		1.27 BSC					
e/2		0.635 BS	С				
e1		3.81 BSC	;				
k		0.52 REF					
L	0.38	0.38 0.48 0.58					
L4	1.47 1.57 1.67						
z		0.55 REF					
z1		0.39 REF					

DOCUMENT NUMBER:	98AON13666G	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	DESCRIPTION: PQFN8 5.00x6.00x0.75, 1.27P PAGE 1 0					
the right to make changes without furth purpose, nor does onsemi assume an	er notice to any products herein. onsemi making liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cours on warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	oducts for any particular			

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>