MOSFET – N-Channel, POWERTRENCH®, Dual

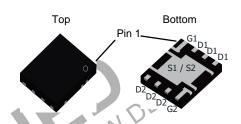
30 V, 167 A, 1.0 m Ω

General Description

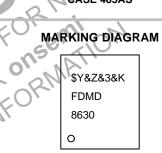
This package integrates two N-Channel devices connected internally in common-source configuration. This enables very low package parasitics and optimized thermal path to the common source pad on the bottom. Provides a very small footprint (5 x 6 mm) for higher power density.

Features

- Common Source Configuration to Eliminate PCB Routing
- Large Source Pad on Bottom of Package for Enhanced Thermals
- Max $r_{DS(on)} = 1.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 38 \text{ A}$
- Max $r_{DS(on)} = 1.3 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 33 \text{ A}$
- Ideal for Flexible Layout in Secondary Side Synchronous Rectification
- 100% UIL Tested
- This Device is Pb-Free and is RoHS Compliant

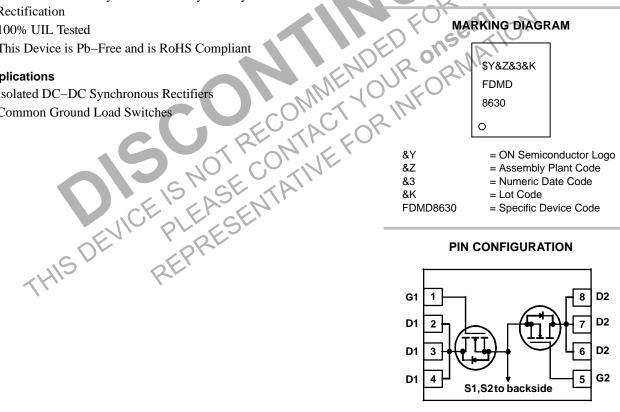

Applications

- Isolated DC-DC Synchronous Rectifiers
- Common Ground Load Switches



ON Semiconductor®

www.onsemi.com


PQFN8 5X6, 1.27P CASE 483AS

= ON Semiconductor Logo = Assembly Plant Code = Numeric Date Code = Lot Code

FDMD8630 = Specific Device Code

PIN CONFIGURATION

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS $T_A = 25$ °C Unless Otherwise Noted

Symbol	Parameter	Ratings	Units
Vds	Drain to Source Voltage	30	V
Vgs	Gate to Source Voltage	±20	V
I _D	Drain Current -Continuous - T _C = 25°C (Note 5)	167 A	
	-Continuous - T _C =100°C (Note 5)	106	
	-Continuous - T _A = 25°C (Note 1a)	38	
	-Pulsed - (Note 4)	1178	
Eas	Single Pulse Avalanche Energy (Note 3)	726	mJ
P _D	Power Dissipation for Single Operation T _C = 25 °C	43	W
	Power Dissipation for Single Operation T _A = 25 °C (Note 1a)	2.3	
TJ, TSTG	Operating and Storage Junction Temperature Range	-55 to +150	(2)

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
Rejc	Thermal Resistance, Junction to Case	2.9	°C/W
Reja	Thermal Resistance, Junction to Ambient (Note 1a)	55	

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package		Reel Size	Tape Width	Quantity
FDMD8630	FDMD8630	Power 5 x 6	1	13"	12 mm	3000 Units

ELECTRICAL CHARACTERISTICS T_J = 25°C Unless Otherwise Noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS	20,411	•	•	•	
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		15		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μΑ
I _{GSS}	Gate to Source Leakage Current, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
ON CHARA	CTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.0	1.6	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		-6		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 38 A		0.6	1.0	mΩ
		V _{GS} = 4.5 V, I _D = 33 A		0.8	1.3	1
		$V_{GS} = 4.5 \text{ V}, I_D = 33 \text{ A}, T_J = 125^{\circ}\text{C}$		0.9	1.5	
9 _{FS}	Forward Transconductance	V _{DD} = 5 V, I _D = 38 A		281		S
DYNAMIC (CHARACTERISTICS		•	•		
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		7090	9930	pF
C _{oss}	Output Capacitance			2025	2835	pF
C _{rss}	Reverse Transfer Capacitance			212	300	pF
Rg	Gate Resistance		0.1	1.9	3.8	Ω
SWITCHING	G CHARACTERISTICS		•	•	•	

ELECTRICAL CHARACTERISTICS T_J = 25°C Unless Otherwise Noted (continued)

Symbol	Parameter	Test Cond	itions	Min	Тур	Max	Units
SWITCHIN	G CHARACTERISTICS	•		•	•		
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 \text{ V}, I_{D} = 38 \text{ A}$			14	26	ns
t _r	Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6$	ι Ω		15	27	ns
t _{d(off)}	Turn-Off Delay Time				66	105	ns
t _f	Fall Time	1			24	39	ns
Q _{g(TOT)}	Total Gate Charge	V _{GS} = 0 V to 10 V	$V_{DD} = 15 \text{ V}$ $I_{D} = 38 \text{ A}$		97	142	nC
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 \text{ V to } 4.5 \text{ V}$	10 - 00 //		46	74	nC
Q _{gs}	Gate to Source Gate Charge				17		nC
Q_{gd}	Gate to Drain "Miller" Charge				12		nC
DRAIN-SO	URCE DIODE CHARACTERISTICS						
V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 38 \text{ A} ($	Note 2)		0.8	1.3	V
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 2 \text{ A}$ (Note 2)		0.7	1.2	V
t _{rr}	Reverse Recovery Time	$I_F = 38 \text{ A}, \text{ di/dt} = 100$	A/μs		64	103	ns
Q _{rr}	Reverse Recovery Charge				56	90	nC

 $R_{\theta JA}$ is determined with the device mounted on a 1 in2 pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JA}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
 E_{AS} of 726 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 22 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 70 A.
 Pulsed Id please refer to Fig 11 SOA graph for more details.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS

T_J = 25°C Unless Otherwise Noted

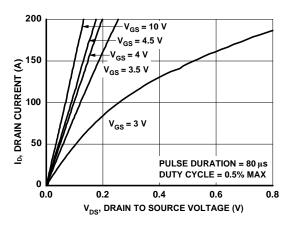


Figure 1. On-Region Characteristics

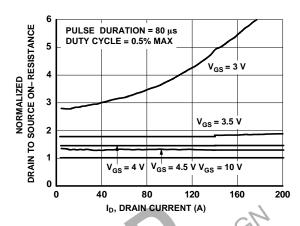


Figure 2. Normalized On–Resistance vs Drain Current and Gate Voltage

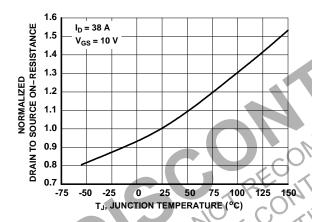


Figure 3. Normalized On Resistance vs Junction Temperature

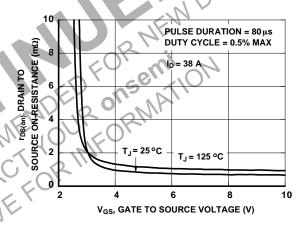


Figure 4. On-Resistance vs Gate to Source Voltage

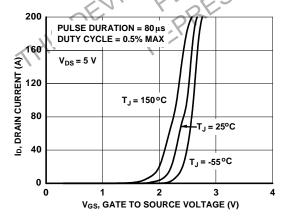


Figure 5. Transfer Characteristics

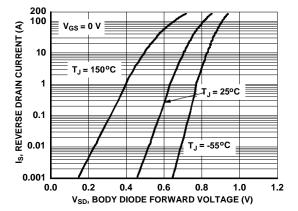


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

TYPICAL CHARACTERISTICS

 $T_J = 25^{\circ}C$ Unless Otherwise Noted (continued)

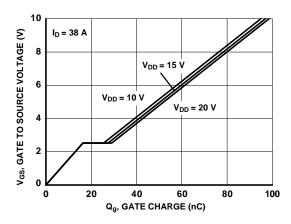


Figure 7. Gate Charge Characteristics

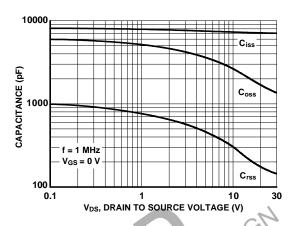
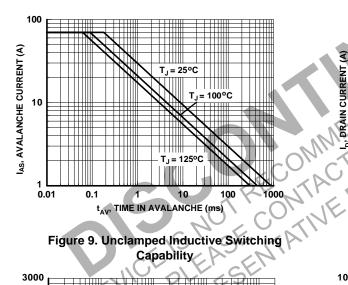



Figure 8. Capacitance vs Drain to Source Voltage

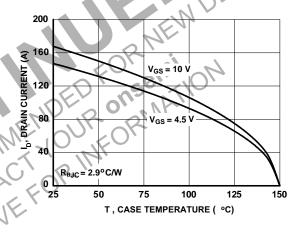


Figure 10. Maximum Continuous Drain Current vs Case Temperature

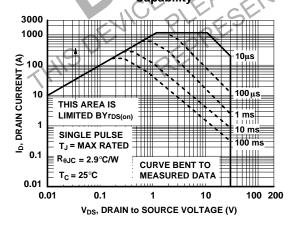


Figure 11. Forward Bias Safe Operating Area

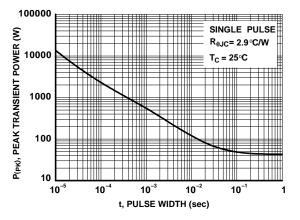


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS

 $T_J = 25^{\circ}C$ Unless Otherwise Noted (continued)

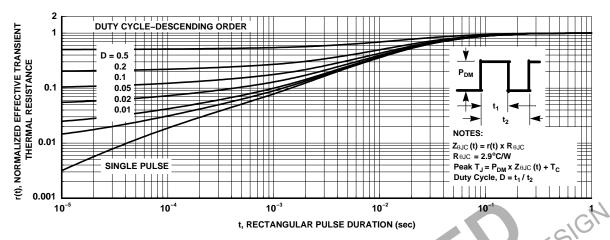
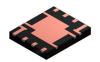
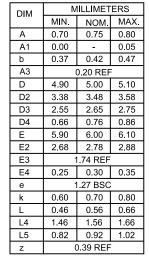
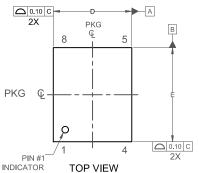



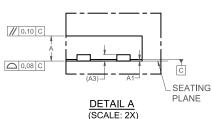
Figure 13. Junction–to–Ambient Transient Thermal Response Curve

THIS DEVICE PLEASENTATIVE PRESENTATIVE PRESENTATIVE PRESENTATIVE

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.




PQFN8 5X6, 1.27P CASE 483AS **ISSUE A**


DATE 17 MAY 2021

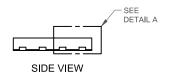
NOTES:

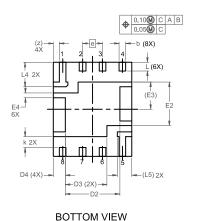
- A) PACKAGE REFERENCE:
- TO JEDEC REGISTRATION, MO-240B, VARIATION AA.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
 C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009
- E) IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP-OUT AREA

3.81

1.27

-0.52 (8X)


-1.91


KEEP-OUT

0.72 (6X)

0.30 (2X)-

1.72 (2X)

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

5.10)———
RECOMMENDED I	LAND PATTERN

3 58

3 1.79

DOCUMENT NUMBER:	98AON13667G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales