onsemi

MOSFET – N-Channel, Shielded Gate, POWER TRENCH[®]

100 V, 57 A, 8.5 m Ω

FDMC86184

Description

This N-Channel logic MV MOSFETs is produced using onsemi advanced POWERTRENCH process that incorporates Shielded Gate technology. This process has been optimized to minimize on-state resistance and yet maintain superior switching performance with best in class soft body diode.

Features

- Shielded Gate MOSFET Technology
- Max $R_{DS(on)} = 8.5 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 21 \text{ A}$
- Max $R_{DS(on)} = 24.8 \text{ m}\Omega$ at $V_{GS} = 6.5 \text{ V}$, $I_D = 10 \text{ A}$
- 50% Lower Qrr than Osther MOSFET Supplier
- Lowers Switching Noise/EMI
- MSL1 Robust Package Design
- 100% UIL Tested
- ESD Protection Level : HBM>1kV, CDM>2kV
- These Device is Pb-Free and RoHS Compliant

Typical Applications or Applications

- Primary DC-DC MOSFET
- Synchronous Rectifier in DC–DC and AC–DC
- Motor Drive
- Solar

WDFN8 3.3X3.3, 0.65P CASE 483AW

MARKING DIAGRAM

FDMC86184 = Specific Device Code A = Assembly Location Y = Year

WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping [†]
FDMC86184	PQFN-8	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

MOSFET MAXIMUM RATINGS T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Unit
V _{DS}	Drain to Source Voltage	100	V
V _{GS}	Gate to Source Voltage	±20	V
Ι _D	Drain Current -Continuous ($T_A = 25^{\circ}C$) (Note 5) -Continuous ($T_A = 100^{\circ}C$) (Note 5) -Continuous ($T_A = 25^{\circ}C$) (Note 1) -Pulsed (Note 4)	57 36 12 266	A
E _{AS}	Single Pulse Avalanche Energy (Note 3)	121	mJ
PD	Power Dissipation ($T_c = 25^{\circ}C$) Power Dissipation ($T_A = 25^{\circ}C$) (Note 1)	54 2.3	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

© Semiconductor Components Industries, LLC, 2011 July, 2024 – Rev 2

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case	2.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1)	53	

ELECTRICAL CHARACTERISTICS T_J = 25 °C unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Characteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	100	-	-	V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, referenced to $25^{\circ}C$	-	59	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V	-	-	1	μΑ
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±20 V, V_{DS} = 0 V	-	-	100	nA
On Characteri	stics					
V _{GS(th)}	Gate to Source Threshold Voltage	V_{GS} = V_{DS} , I_D = 110 μ A	2.0	3.1	4.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 110 µA, referenced to 25 °C	-	-9	-	mV/°C
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 21 A	_	6.4	8.5	mΩ
		V _{GS} = 6 V,I _D = 10 A	-	11	24.8	
		V _{GS} = 10 V, I _D = 21 A, T _J = 125 °C	_	11	18	
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 21 A	_	49	-	S
Dynamic Char	acteristics					
C _{iss}	Input Capacitance	V_{DS} = 50 V, V_{GS} = 0 V, f = 1 MHz	-	1490	2090	pF
C _{oss}	Output Capacitance		-	906	1270	pF
C _{rss}	Reverse Transfer Capacitance		-	13	25	pF
Rg	Gate Resistance		0.1	0.4	1.2	Ω
Switching Cha	racteristics					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 21 \text{ A},$	-	12	22	ns
tr	Rise Time	$v_{GS} = 10 v, n_{GEN} = 0.22$	-	4	10	ns
t _{d(off)}	Turn-Off Delay Time		-	17	31	ns
t _f	Fall Time		-	4	10	ns
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V, V _{DD} = 50 V, I _D = 21 A	-	21	30	nC
Qg	Total Gate Charge	$V_{GS} = 0 V \text{ to } 6 V,$ $V_{DD} = 50 V, I_D = 21 A$	-	14	20	nC
Q _{gs}	Total Gate Charge	V _{DD} = 50 V, I _D = 21 A	-	6.5	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	V _{DD} = 50 V, I _D = 21 A	-	4.6	-	nC
Q _{oss}	Output Charge	V _{DD} = 50 V, V _{GS} = 0 V	-	61	-	nC

ELECTRICAL CHARACTERISTICS (continued) T_J = 25 °C unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Drain-Source Diode Characteristics						
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.1 A (Note 2)	-	0.7	1.2	V
		V _{GS} = 0 V, I _S = 21 A (Note 2)	-	0.8	1.3	
t _{rr}	Reverse Recovery Time	I _F = 10 A, di/dt = 300 A/μs	-	27	44	ns
Q _{rr}	Reverse Recovery Charge		-	46	74	nC
t _{rr}	Reverse Recovery Time	I _F = 10 A, di/dt = 1000 A/μs	-	21	34	ns
Q _{rr}	Reverse Recovery Time		-	96	154	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material $R_{\theta CA}$ is determined by the

user's board design.

- Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%
 E_{AS} of 121 mJ is based on starting T_J = 25 °C; N-ch: L = 3 mH, I_{AS} = 9 A, V_{DD} = 100 V, V_{GS} =10 V. 100% test at L = 0.3 mH, I_{AS} = 21 A.
 Pulsed ld please refer to Figure 11 SOA graph for more details.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electron provide the provide the provide the start of the provide the provide the provide the start of the provide th electro-mechanical application board design.

b. 125 °C/W when mounted on a minimum pad of 2 oz copper

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (CONTINUED)

TYPICAL CHARACTERISTICS (CONTINUED)

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

onsemi

XXXX = Specific Device Code A = Assembly Location Y = Year WW = Work Week This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13672G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	WDFN8 3.30x3.30x0.75, 0.65P		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>