

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

FDD3N50NZ N-Channel UniFETTM II MOSFET **500 V, 2.5 A, 2.5** Ω

Features

- R_{DS(on)} = 2.1 Ω (Typ.) @ V_{GS} = 10 V, I_D = 1.25 A
- Low Gate Charge (Typ. 6.2 nC)
- Low C_{rss} (Typ. 2.5 pF)
- · 100% Avalanche Tested
- · Improved dv/dt Capability
- · ESD Imoroved Capability
- RoHS Compliant

Applications

- LCD/LED/PDP TV
- Lighting
- · Uninterruptible Power Supply

Description

UniFETTM II MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on advanced planar stripe and DMOS technology. This advanced MOSFET has the smallest on-state resistance among the plar MOS, T, and also provides superior switching perfr nan, and I her avalanche energy strength. In additir internal te-sr ice ESD glode allows UniFET II MOSFL to v .stand _ 2kV /iRk surge stress. This device t, ily i, attable for switching power converter applications such as productor correction (PFC), flat panel disr'ny (. D) TV wei, ATX and electronic lamp ballasts.

D 0

April 2025

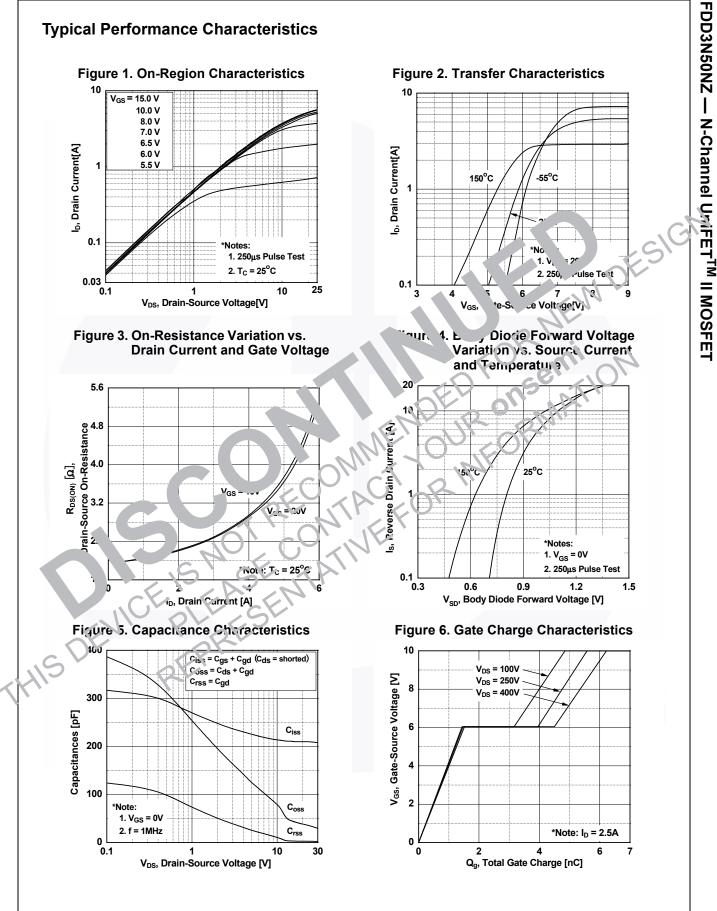
D-PA

Absolu. Maxim m Ratings T_C = 25°C unless other vise noted.

Sym. 1	6 6	Paramoter				
V. 3	Drain to Source Voltage	Drain to Source Voltage				
V _{GS}	Gale to Source Initage	Gate to Source /cltage				
ID	Drain Current	- Continuous (T _C = 25°C)	- Continuous (T _C = 25°C)		Α	
		- Continuous (T _C = 100 ^o C)		1.5	A	
IDM	Drain Current - Pulsed		(Note 1)	10	Α	
F _{AD}	Single Pulsed Avalanche E	(Note 2)	114	mJ		
AR	Avalanche Current		(Note 1)	2.5	Α	
E _{AR}	Repetitive Avalanche Ener	ду	(Note 1)	4	mJ	
dv/dt	Peak Diode Recovery dv/d	(Note 3)	10	V/ns		
P _D	Dower Dissinction	(T _C = 25°C)	(T _C = 25°C)		W	
	Power Dissipation	- Derate Above 25°C		0.3	W/ºC	
T _J , T _{STG}	Operating and Storage Ter		-55 to +150	°C		
TL	Maximum Lead Temperatu	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			°C	

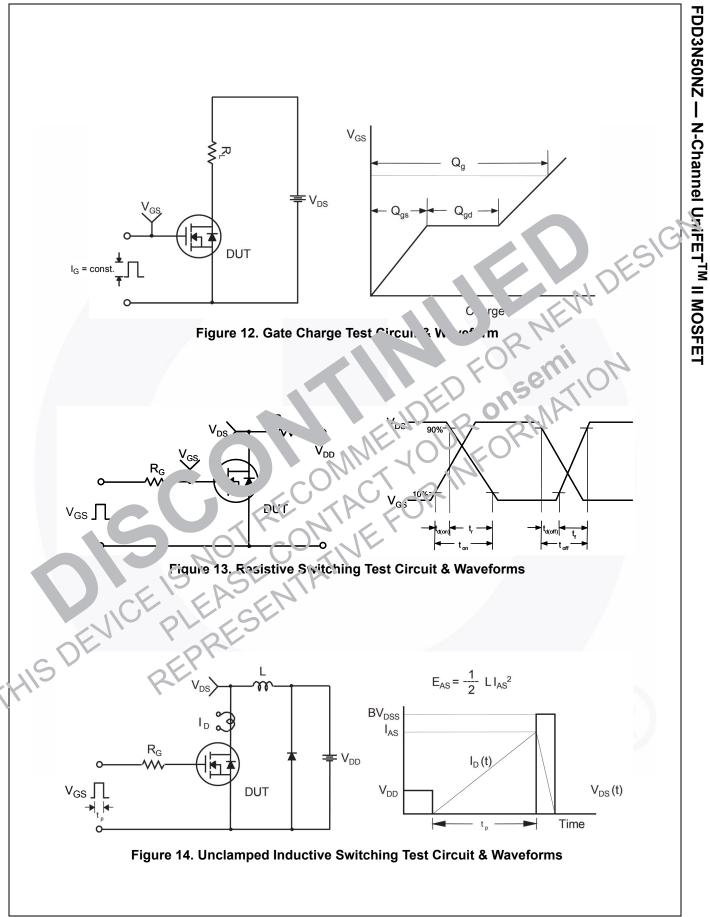
Thermal Characteristics

FDD3N50NZ Rev. 3


Symbol	Parameter	FDD3N50NZTM	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	3.1	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max.	90	0/00

©2011 Fairchild Semiconductor Corporation

1


Part Nu	Part Number Top Mark F		Packa	age	Packing Method	Reel Size	e Ta	pe Width	Qua	antity
		DPA			330 mm		16 mm	2500 units		
Electrica	I Chara	cteristics T _C = 25%	C unless	otherv	vise noted.					
Symbol		Parameter			Test Condition	s	Min.	Тур.	Max.	Unit
Off Charac	teristics									
BV _{DSS}	Drain to S	ource Breakdown Voltag	ge	I _D =	250 μA, V _{GS} = 0 V, T	_C = 25°C	500	-	-	V
∆BV _{DSS}		n Voltage Temperature	,					0.5		V/00
$/\Delta T_J$	Coefficien			$I_D = 250 \ \mu$ A, Referenced to 25° C		-	0.5	-	V/ºC	
	Zero Gate Voltage Drain Current			V _{DS} = 500 V, V _{GS} = 0 V		-	-	1	μA	
DSS	2010 0010	Voltage Drain Gunent		V_{DS} = 400 V, V_{GS} = 0 V, T_{C} = 125°C			-		10	μι
I _{GSS}	Gate to Body Leakage Current			V_{GS} = ±25 V, V_{DS} = 0 V			-	±10	μA	
On Charac	teristics								/ /	S
V _{GS(th)}	-	eshold Voltage		Vac	= V _{DS} , I _D = 250 μA		-0-		50	V
VGS(th) R _{DS(on)}		in to Source On Resistar	nce	$V_{GS} = V_{DS}, I_D = 250 \mu\text{A}$ $V_{GS} = 10 \text{V}, I_D = 1.25 \text{A}$				2.1	2.5	Ω
9FS		Fransconductance			$= 20 \text{ V}, \text{ I}_{\text{D}} = 1.2 \text{ A}$			19	-	S
9FS	i oi ii di di di	Tanoconductance		•DS	20 1, 10 1. 11	\rightarrow)(Ũ
Dynamic C	haracter	istics					2			
C _{iss}	Input Capa	acitance		- V-	25 V _{GS} 0 V,		<u> </u>	211	280	pF
C _{oss}	Output Ca	-		VF	25 V _{GS} 0 V, MHz	SX.		30	4.	pF
C _{rss}		Transfer Capacitance				\sim		2.5	Э	pF
Q _{g(tot)}		e Charge at 10V		VDS	= 0 V, I _D = 2.5 A			6.2	8	nC
Q _{gs}	Gate to So	ource Gate Charge		'GS	= 10 V			1.4	-	nC
Q _{gd}	Gate to Di	rain "Miller" Cha			AK.	(Note 4)	Θ	3.1	-	nC
Switching	Characte	ristics		~	VIL 10	YLA.				
t _{d(on)}	Turn-On D		C	\mathbf{O}	C		-	10	30	ns
tr	Turn-On R	tis Time	20	V _{DD}	= $25C V / I_D = 2.5 A_s$ = $10 V / R_C = 25 C_s$		-	15	40	ns
t _{d(off)}	TV U.D	ime		V _{GS}	= 10 V, $R_{C} = 25 \Omega$	-	-	26	60	ns
t _f	I	Time				(Note 4)	-	17	45	ns
Dra [;] ui		Jhara teristics	\mathbf{C}	X	Nr					
		Continuous Drain to Sou	reo Di vd		uard Current				2.5	Α
I <u>s</u> M		Pulsed Drain o Source I							10	A
V _{SD}	4	Jurce Dioc'e Forward Vol			= 0 V, I _{SD} = 2.5 A		-		1.4	V
		Recovery Time	lage		= 0 V, I _{SD} = 2.5 A = 0 V, I _{SD} = 2.5 A,		-	- 190	-	ns
t _{rr} Q _{rr}		Recovery Clarge			= 0 V, I _{SD} = 2.5 A, It = 100 A/μs		-	0.52	·	μC
				air, c	1007840		_	0.02		μΟ
$P_{\rm s}$ = 36.6 mH, $I_{\rm AS}$ 8. $I_{\rm SD}$ \leq 2.5 A, di/dt	s = 2.5 A, V _{DD} = ≤ 200 A/μs, V _{DI}	Neo by maximum junction tempe $b \in \mathcal{W}$, $R_G = 25 \Omega$, starting $T_J = 25 \Omega$ $D \leq BV_{DSS}$, starting $T_J = 25^{\circ}C$. ating temperature typical character	5°C.							

2

©2011 Fairchild Semiconductor Corporation FDD3N50NZ Rev. 3

FDD3N50NZ — N-Channel UMFETTM II MOSFET DUT + V_{DS} a ۱_{sd} م DESI Т V_{DD} Driver R_G Same Type as DUT ∏∏ V_{GS} dv/dt ntr، عd by R_o روم، 'lea by nulse period Cate Fulse Width Gate Pulse Period Î V_{GS} D = 10V •ive Body Diote Forward Current I_{sd} (DUT di/dt ISDE I_{RM} Body Diode Reverse Current Vus (DUT) Body Diode Recovery dv/dt V_{SD} V_{DD} Body Diode Forward Voltage Drop Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. I

FDD3N50NZ — N-Channel UmFETTM II MOSFE

NOT RECONNENDED FOR MENDESIGN ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC