

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

N-Channel PowerTrench[®] MOSFET 30 V, 6.1 A, 26 m Ω

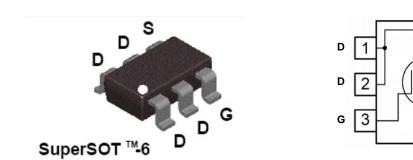
Features

- Max $r_{DS(on)} = 26 \text{ m}\Omega \text{ at } V_{GS} = 10 \text{ V}, I_D = 6.1 \text{ A}$
- Max $r_{DS(on)} = 33 \text{ m}\Omega \text{ at } V_{GS} = 4.5 \text{ V}, I_D = 5.3 \text{ A}$
- High Performance Trench Technology for Extremely Low rDS(on)
- High Power and Current Handling Capability in a Widely Used Surface Mount Package
- Fast Switching Speed
- RoHS Compliant

General Description

This N-Channel PowerTrench MOSFET is produced using Fairchild's advanced PowerTrench[®] process that has been especially tailored to minimize on-state resistance and yet maintain low gate charge for superior switching performance.

D


6

5

4|s

Applications

- Load Switch
- Battery Protection
- Power Management

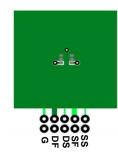
MOSFET Maximum Ratings TA= 25°C unless otherwise noted.

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage		(Note 3)	±20	V	
I _D	-Continuous	$T_A = 25^{\circ}C$	(Note 1a)	6.1	•	
	-Pulsed		(Note 4)	62	— A	
6	Power Dissipation		(Note 1a)	1.6	14/	
PD	Power Dissipation (Note 1b)		(Note 1b)	0.7	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Ra	inge		-55 to + 150	°C	

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	78	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	175	°C/W

Package Marking and Ordering Information

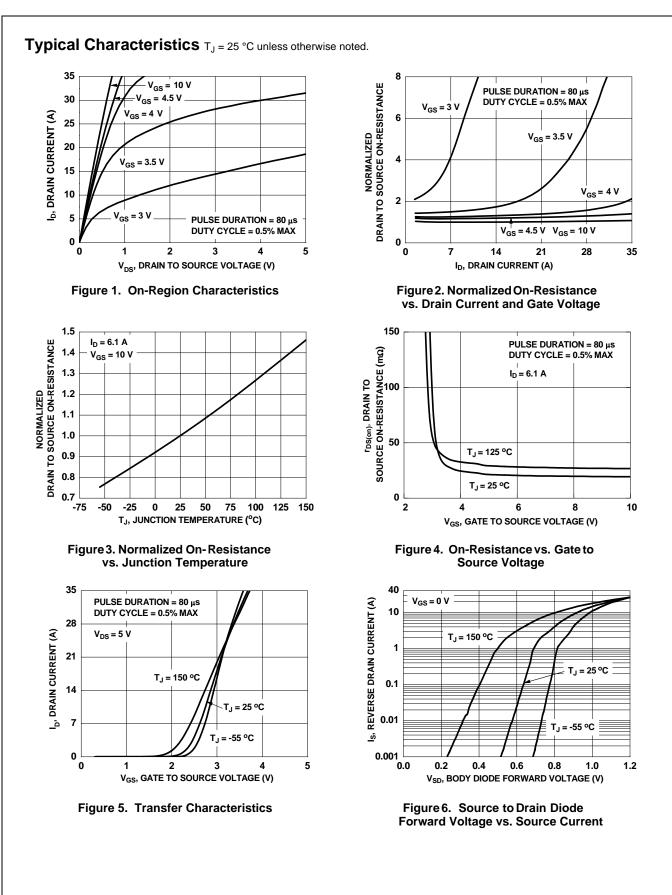

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
21N	FDC021N30	SSOT-6 [™]	7 "	8 mm	3000 units

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Chara	octeristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25°C		16		mV/°0
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = 20 V, V_{DS} = 0 V$			100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	1.0	1.8	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25°C		-5		mV/°C
	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 6.1 A		19	26	
r _{DS(on)}		V _{GS} = 4.5 V, I _D = 5.3 A		23	33	mΩ
		V _{GS} = 10 V, I _D = 6.1 A, T _J = 125°C		26	37	
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 6.1 A		30		S
	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 15 V, V_{GS} = 0 V,$ = 1 MHz		510	710	pF
C _{oss}	Output Capacitance			170	240	pF
C _{rss}	Reverse Transfer Capacitance			22	30	pF
R _g	Gate Resistance		0.1	1.3	2.6	Ω
Switching	g Characteristics					
d(on)	Turn-On Delay Time			6	12	ns
r	Rise Time	V _{DD} = 15 V, I _D = 6.1 A,		2	10	ns
d(off)	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		13	24	ns
f	Fall Time			2	10	ns
ຊ _{g(TOT)}	Total Gate Charge	$\frac{V_{GS} = 0 \text{ V to } 10 \text{ V}}{V_{GS} = 0 \text{ V to } 4.5 \text{ V}} V_{DD} = 15 \text{ V},$ $I_{D} = 6.1 \text{ A}$		7.7	10.8	nC
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 V \text{ to } 4.5 V$ $V_{DD} = 15 V$, $V_{DD} = 6.1 A$		3.7	5.2	nC
ସ _{gs}	Gate to Source Charge			1.4		nC
Q _{gd}	Gate to Drain "Miller" Charge			1.1		nC
Drain-Sou	urce Diode Characteristics					
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 6.1 A$ (Note 2)		0.8	1.2	V
t _{rr}	Reverse Recovery Time			14	25	ns
Q _{rr}	Reverse Recovery Charge	— I _F = 6.1 A, di/dt = 100 A/μs		3	10	nC

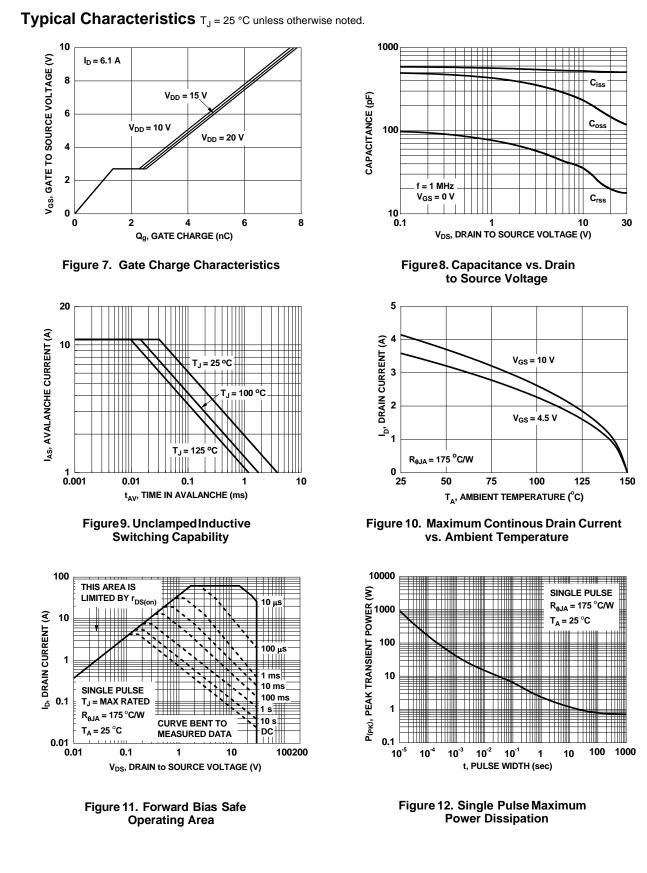
Reverse Recovery Charge

 Q_{rr} Notes:

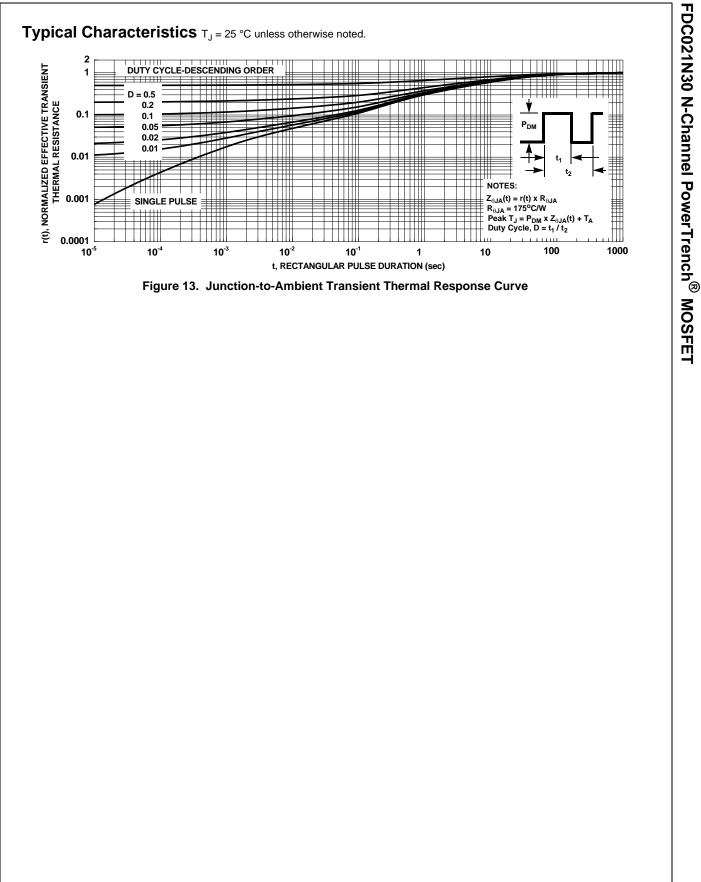
1: R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

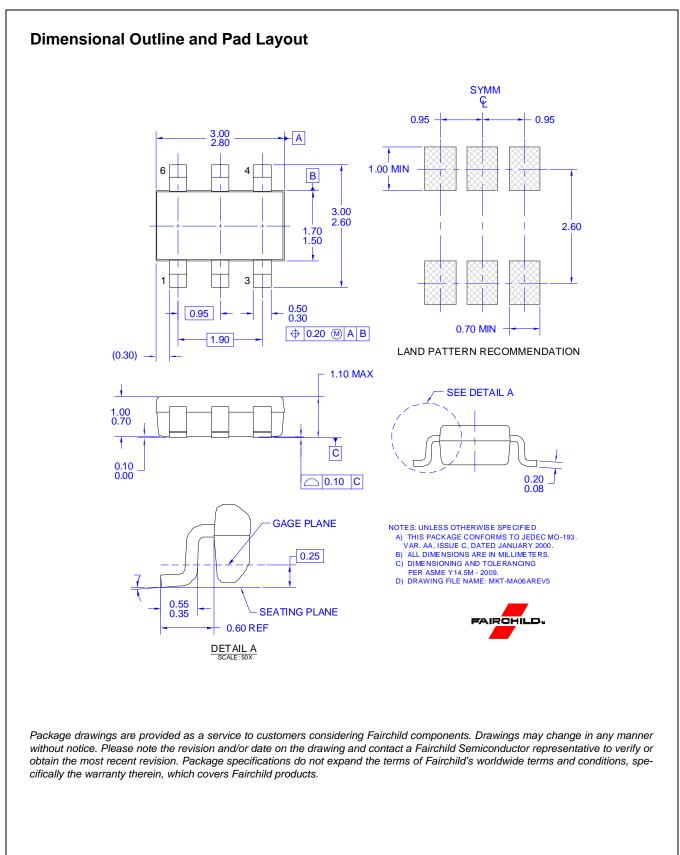

a. 78 °C/W when mounted on a 1 in² pad of 2 oz copper

b.175 °C/W when mounted on a minimum pad of 2 oz copper


Pulse Test: Pulse Width<300 us, Duty Cycle<2.0%.
 As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.
 Pulsed Id please refer to Fig 11 SOA graph for more details.

FDC021N30 N-Channel PowerTrench[®] MOSFET




©2016 Fairchild Semiconductor Corporation FDC021N30 Rev. 1.0 www.fairchildsemi.com

©2016 Fairchild Semiconductor Corporation FDC021N30 Rev. 1.0

FDC021N30 N-Channel PowerTrench[®] MOSFET

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM AttitudeEngine TM Awinda [®] AX-CAP [®] * BitSiC TM Build it Now TM CorePLUS TM CorePOWER TM CROSSVOLTIM CTL TM CUrrent Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series TM FACT [®] FastvCore TM FETBench TM FPS TM	F-PFS TM FRFET [®] Global Power Resource SM Green FPS TM Green FPS TM e-Series TM Gmax TM GTO TM IntelliMAX TM ISOPLANAR TM Marking Small Speakers Sound Louder and Better TM MegaBuck TM MICROCOUPLER TM MicroPak TM MicroPak TM MicroPak TM MicroPak TM MicroPak TM MicroPak TM MicroIndid [®] MT [®] MT [®] MVN [®] mWSaver [®] OptoHiT TM OPTOLOGIC [®]	OPTOPLANAR [®] $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	E GENERAL TinyBoost [®] TinyCalc TM TinyLogic [®] TINYOPTO TM TinyPower TM TinyPWM TM TranSiC TM TranSiC TM TranSiC TM TriFault Detect TM RUECURRENT [®] * μ SerDes TM E GENES UHC [®] Ultra FRFET TM VCX TM VisualMax TM VoltagePlus TM XS TM M童 [®]
--	--	---	--

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

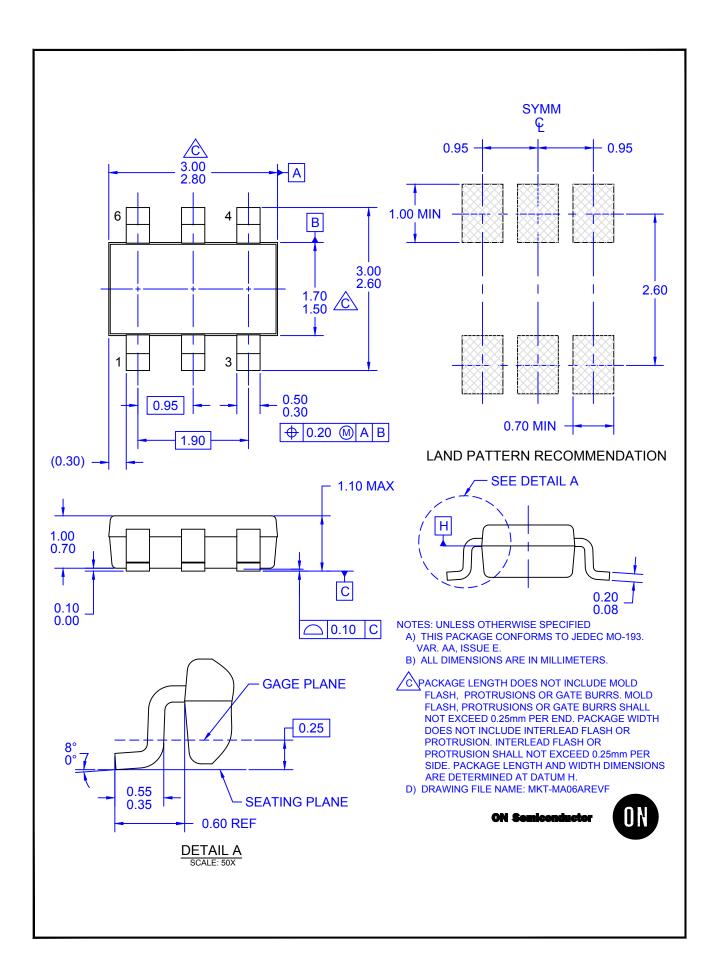
DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY


Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's quality standards for handling and storage and provide access to Fairchild's quadress and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts buyf from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC