onsemi

<u>MOSFET</u> - Power, Single N-Channel 40 V, 1.1 mΩ, 240 A

FDBL9406L-F085

Features

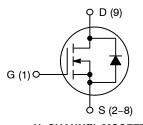
- Small Footprint (TOLL) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Parar	neter		Symbol	Value	Unit
Drain-to-Source Voltag	е		V _{DSS}	40	V
Gate-to-Source Voltag	е		V _{GS}	±20	V
Continuous Drain Current $R_{\theta JC}$ (Notes 1, 3)	Steady	T _C = 25°C	Ι _D	240	A
Power Dissipation	State	$T_{C} = 25^{\circ}C$	PD	300	W
$R_{\theta JC}$ (Note 1)		T _C = 100°C		150	1
Continuous Drain		T _A = 25°C	۱ _D	43	А
Current R _{θJA} (Notes 1, 2, 3)	Steady	$T_A = 100^{\circ}C$		31	
Power Dissipation	State	$T_A = 25^{\circ}C$	PD	3.5	W
R _{θJA} (Notes 1, 2)		T _A = 100°C		1.7	
Pulsed Drain Current	T _C = 25	°C, t _p = 10 μs	I _{DM}	2755	А
Operating Junction and Range	Storage T	emperature	T _J , T _{stg}	–55 to +175	°C
Source Current (Body D)iode)		I _S	100	А
Single Pulse Drain-to-S Energy (I _{L(pk)} = 85 A; L		alanche	E _{AS} 217		mJ
	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C

MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

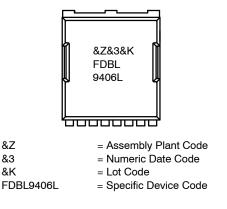

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	0.5	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	43	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. Current is limited by bondwire configuration.

2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
40 V	1.1 mΩ @ 10 V	00.4
	1.78 mΩ @ 4.5 V	80 A



N-CHANNEL MOSFET

H-PSOF8L CASE 100CU

MARKING DIAGRAM

ORDERING INFORMATION

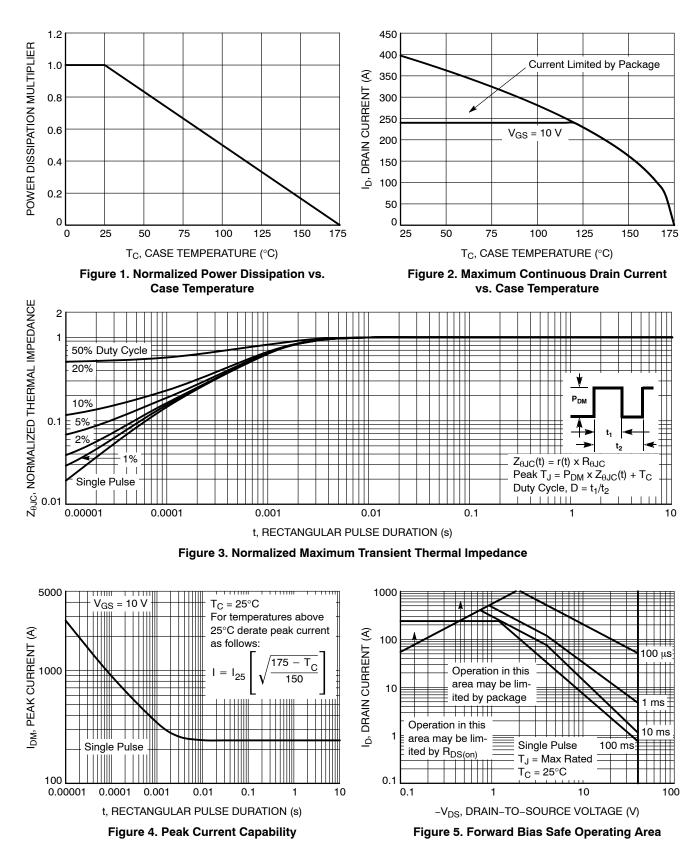
See detailed ordering and shipping information on page 6 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

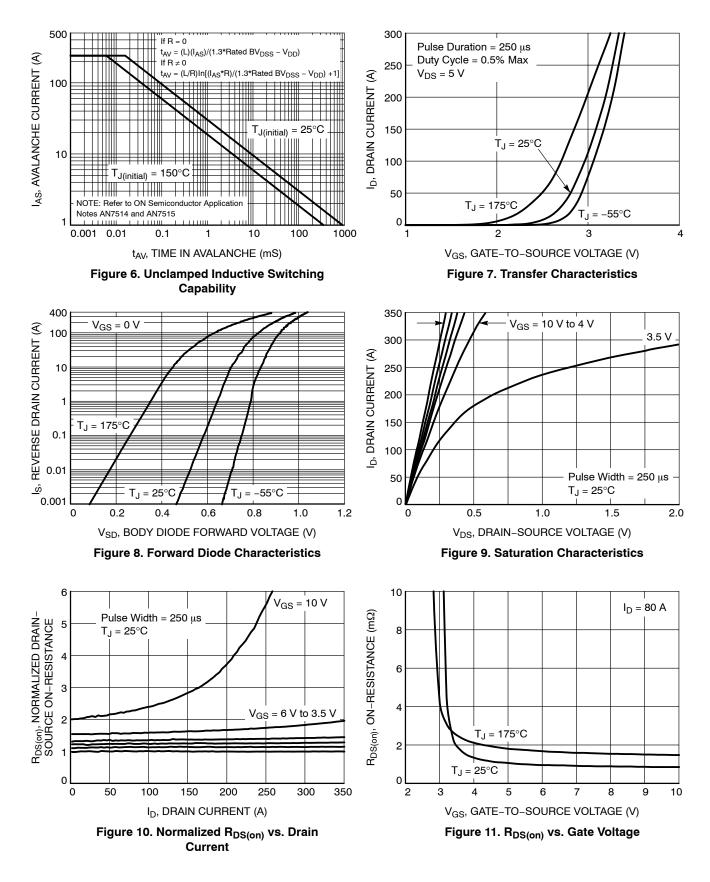
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A	40	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J		-	19.3	-	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = 40 V, T_J = 25 $^\circ C$	-	-	1	μΑ
		V_{GS} = 0 V, V_{DS} = 40 V, T_{J} = 175°C	-	-	1	mA
Zero Gate Voltage Drain Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 20 V	-	-	±100	nA
ON CHARACTERISTICS (Note 4)						
Gate Threshold Voltage	V _{GS(th)}	$V_{GS}=V_{DS},I_{D}=250\;\mu A$	1	1.9	3	V
Threshold Temperature Coefficient	V _{GS(th)} /T _J		-	-6.5	-	mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 10 V, I _D = 80 A	-	0.9	1.1	mΩ
		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 40 \text{ A}$	-	1.25	1.78	
CHARGES, CAPACITANCES & GATE	RESISTANCE		-	•		
Input Capacitance	C _{iss}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 20 V	-	8600	-	pF
Output Capacitance	C _{oss}		-	2380	-	pF
Reverse Transfer Capacitance	C _{rss}		-	106	-	pF
Gate Resistance	Rg	V _{GS} = 0.5 V, f = 1 MHz	-	2	-	Ω
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} = 32 V, I_{D} = 80 A	-	58	-	nC
		V_{GS} = 10 V, V_{DS} = 32 V, I_{D} = 80 A	-	121	-	
Threshold Gate Charge	Q _{g(th)}	V_{GS} = 0 to 1 V	-	7	-	
Gate-to-Source Gate Charge	Q _{gs}	$V_{DD} = 32 \text{ V}, \text{ I}_{D} = 80 \text{ A}$	-	26	-	
Gate-to-Drain "Miller" Charge	Q _{gd}		-	19	-	
Plateau Voltage	V _{GP}		-	3.2	-	V
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(on)}	$V_{DD} = 20 V, I_D = 80 A,$	-	22	-	ns
Turn-On Rise Time	t _r	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$	-	22	-	ns
Turn-Off Delay Time	t _{d(off)}		-	134	-	ns
Turn-Off Fall Time	t _f		-	44	-	ns
DRAIN-SOURCE DIODE CHARACTEI	RISTICS					
Source-to-Drain Diode Voltage	V _{SD}	$I_{SD} = 80 \text{ A}, \text{ V}_{GS} = 0 \text{ V}$	-	0.81	1.25	V
		$I_{SD} = 40 \text{ A}, \text{ V}_{GS} = 0 \text{ V}$	-	0.77	1.2	V
Reverse Recovery Time	T _{RR}	V_{GS} = 0 V, dI _{SD} /dt = 100 A/µs	-	77	-	ns
Charge Time	t _a	I _S = 80 A	-	38	-	
Discharge Time	t _b		_	39	_	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.

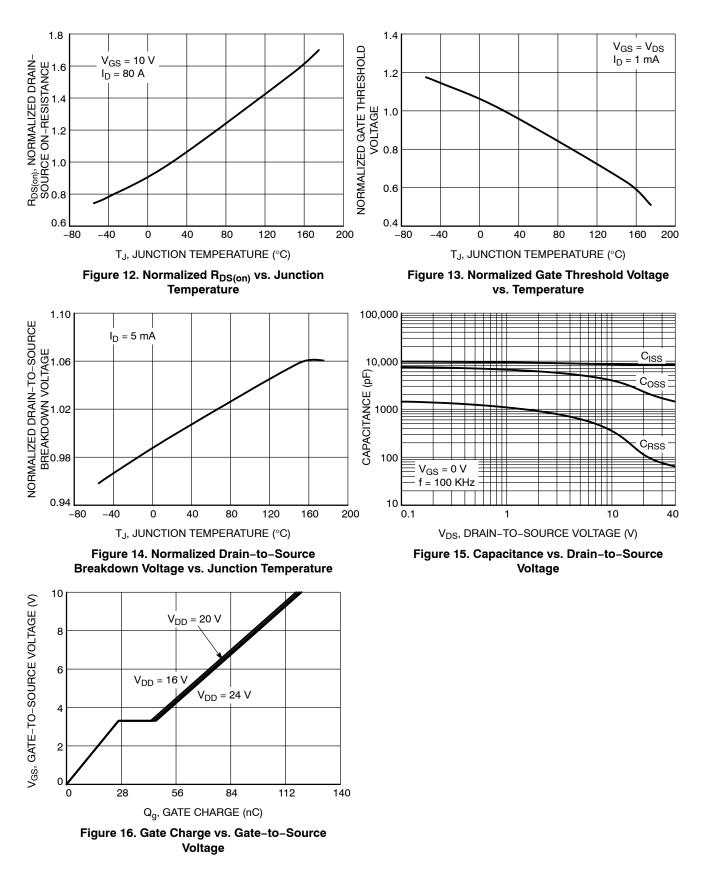
95


nC

Reverse Recovery Charge

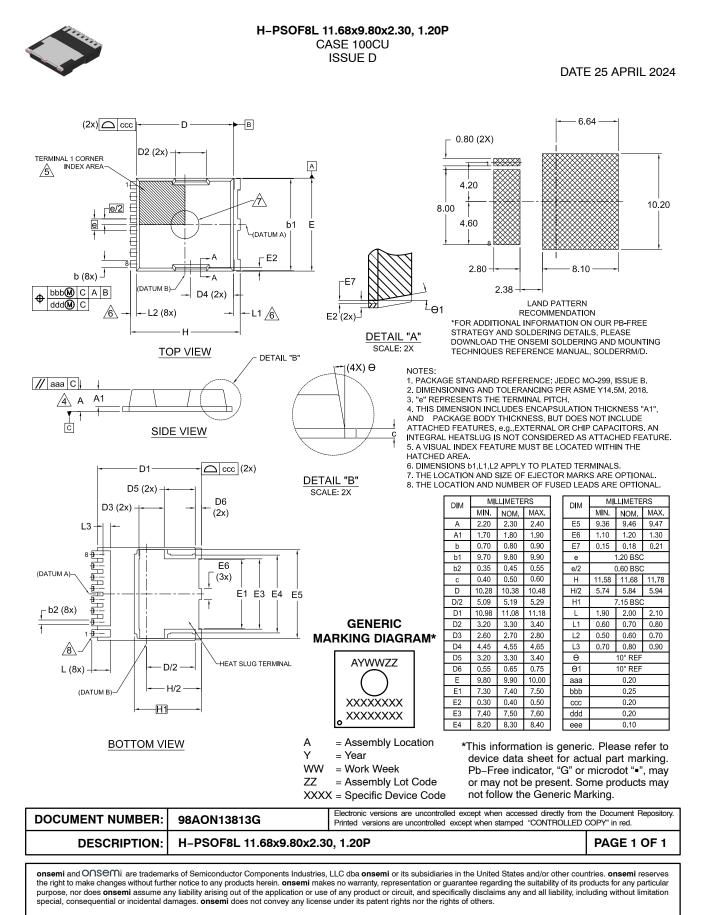

5. Switching characteristics are independent of operating junction temperatures.

Q_{RR}


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS



PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Reel Size	Tape Width	Quantity
FDBL9406L-F085	FDBL9406L	H-PSOF8L (Pb-Free / Halogen Free)	13″	24 mm	2000 Units

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

Onsemí.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>