**ON Semiconductor** 

Is Now

# Onsemi

To learn more about onsemi<sup>™</sup>, please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari



**ON Semiconductor®** 

# FDBL86561-F085

## N-Channel PowerTrench<sup>®</sup> MOSFET

## **60 V, 300 A, 1.1 m**Ω

#### Features

- Typical  $R_{DS(on)}$  = 0.85 m $\Omega$  at  $V_{GS}$  = 10V, I<sub>D</sub> = 80 A
- Typical  $Q_{g(tot)}$  = 170 nC at  $V_{GS}$  = 10V,  $I_D$  = 80 A
- UIS Capability
- RoHS Compliant
- Qualified to AEC Q101

#### Applications

- Automotive Engine Control
- PowerTrain Management
- Solenoid and Motor Drivers
- Integrated Starter/Alternator
- Primary Switch for 12V Systems

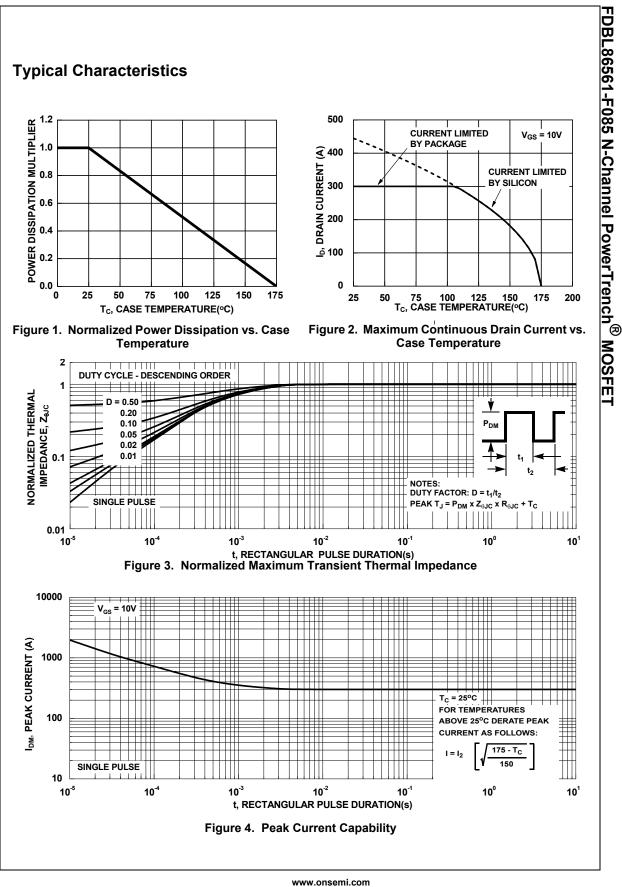
#### **MOSFET Maximum Ratings** T<sub>J</sub> = 25°C unless otherwise noted.

| Symbol                            | Parameter                                                 |                       | Ratings      | Units             |  |
|-----------------------------------|-----------------------------------------------------------|-----------------------|--------------|-------------------|--|
| V <sub>DSS</sub>                  | Drain-to-Source Voltage                                   |                       | 60           | V                 |  |
| V <sub>GS</sub>                   | Gate-to-Source Voltage                                    |                       | ±20          | V                 |  |
| ID                                | Drain Current - Continuous (V <sub>GS</sub> =10) (Note 1) | T <sub>C</sub> =25°C  | 300          |                   |  |
|                                   | Pulsed Drain Current                                      | T <sub>C</sub> = 25°C | See Figure 4 | — A               |  |
| E <sub>AS</sub>                   | Single Pulse Avalanche Energy                             | (Note 2)              | 1167         | mJ                |  |
| D                                 | Power Dissipation                                         |                       | 429          | W                 |  |
| PD                                | Derate Above 25°C                                         |                       | 2.86         | W/ <sup>o</sup> C |  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature                         |                       | -55 to + 175 | °C                |  |
| $R_{\theta JC}$                   | Thermal Resistance, Junction to Case                      |                       | 0.35         | °C/W              |  |
| R <sub>0JA</sub>                  | Maximum Thermal Resistance, Junction to Ambient           | (Note 3)              | 43           | °C/W              |  |

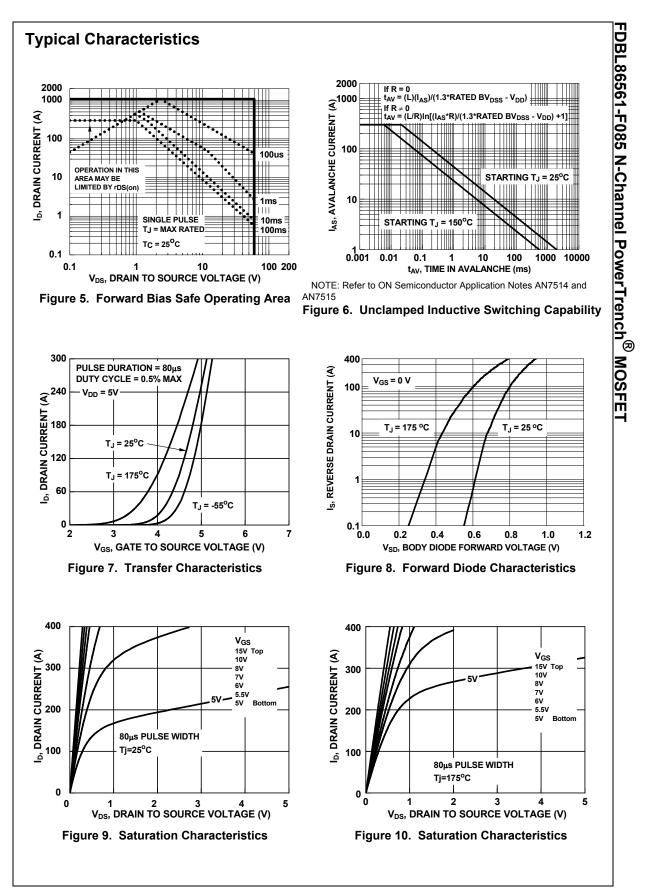
S

#### Notes:

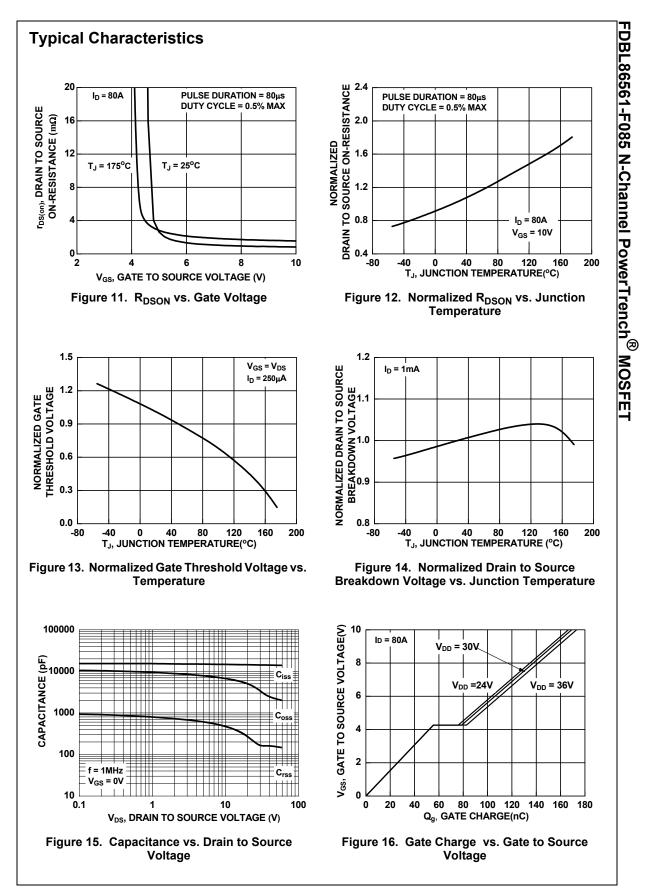
- 1: Current is limited by bondwire configuration.
- 2: Starting T<sub>J</sub> = 25°C, L = 0.57mH, I<sub>AS</sub> = 64A, V<sub>DD</sub> = 40V during inductor charging and V<sub>DD</sub> = 0V during time in avalanche. 3:  $R_{0JA}$  is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder
- 3: R<sub>0JA</sub> is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R<sub>0JC</sub> is guaranteed by design, while R<sub>0JA</sub> is determined by the board design. The maximum rating presented here is based on mounting on a 1 in<sup>2</sup> pad of 2oz copper.


### Package Marking and Ordering Information

| Device Marking | Device         | Package |   |   |   |
|----------------|----------------|---------|---|---|---|
| FDBL86561      | FDBL86561-F085 | MO-299A | - | - | - |




|                                                                                                                                                      | Parameter                                                                                                                                                                                                                                             | Test Conditions                                                                                            |                                                     | Min.                                      | Тур.                                             | Max.                                                | Units                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|--------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|
| Off Cha                                                                                                                                              | racteristics                                                                                                                                                                                                                                          |                                                                                                            | I                                                   |                                           |                                                  |                                                     |                                                   |
| B <sub>VDSS</sub>                                                                                                                                    | Drain-to-Source Breakdown Voltage                                                                                                                                                                                                                     | I <sub>D</sub> = 250μA,                                                                                    | V <sub>GS</sub> =0V                                 | 60                                        | -                                                | -                                                   | V                                                 |
| I <sub>DSS</sub>                                                                                                                                     | Drain-to-Source Leakage Current                                                                                                                                                                                                                       | V <sub>DS</sub> = 60V                                                                                      | $T_J = 25^{\circ}C$                                 | -                                         | -                                                | 1                                                   | μA                                                |
|                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                            | T <sub>J</sub> = 175 <sup>o</sup> C (Note 4)        | -                                         | -                                                | 3                                                   | mA                                                |
| I <sub>GSS</sub>                                                                                                                                     | Gate-to-Source Leakage Current                                                                                                                                                                                                                        | $V_{GS}$ = ±20V                                                                                            |                                                     | -                                         | -                                                | ±100                                                | nA                                                |
| On Cha                                                                                                                                               | racteristics                                                                                                                                                                                                                                          |                                                                                                            |                                                     |                                           |                                                  |                                                     |                                                   |
| V <sub>GS(th)</sub>                                                                                                                                  | Gate to Source Threshold Voltage                                                                                                                                                                                                                      | $V_{GS} = V_{DS}$ ,                                                                                        | l <sub>D</sub> = 250μA                              | 2.0                                       | 3.0                                              | 4.0                                                 | V                                                 |
| Read N                                                                                                                                               | Drain to Source On Resistance                                                                                                                                                                                                                         | I <sub>D</sub> = 80A,                                                                                      | T <sub>J</sub> = 25 <sup>o</sup> C                  | -                                         | 0.85                                             | 1.1                                                 | mΩ                                                |
| R <sub>DS(on)</sub>                                                                                                                                  |                                                                                                                                                                                                                                                       | V <sub>GS</sub> = 10V                                                                                      | $T_{J} = 175^{\circ}C$ (Note 4)                     | -                                         | 1.5                                              | 2.2                                                 | mΩ                                                |
| Dynam                                                                                                                                                | ic Characteristics                                                                                                                                                                                                                                    |                                                                                                            |                                                     |                                           |                                                  |                                                     |                                                   |
| C <sub>iss</sub>                                                                                                                                     | Input Capacitance                                                                                                                                                                                                                                     |                                                                                                            |                                                     | -                                         | 13650                                            | -                                                   | pF                                                |
| C <sub>oss</sub>                                                                                                                                     | Output Capacitance                                                                                                                                                                                                                                    | − V <sub>DS</sub> = 30V, V<br>f = 1MHz                                                                     | V <sub>GS</sub> = 0V,                               | -                                         | 3375                                             | -                                                   | pF                                                |
| C <sub>rss</sub>                                                                                                                                     | Reverse Transfer Capacitance                                                                                                                                                                                                                          |                                                                                                            |                                                     | -                                         | 255                                              | -                                                   | pF                                                |
| R <sub>g</sub>                                                                                                                                       | Gate Resistance                                                                                                                                                                                                                                       | f = 1MHz                                                                                                   |                                                     | -                                         | 2.3                                              | -                                                   | Ω                                                 |
| 5                                                                                                                                                    | Total Cata Charge at 101/                                                                                                                                                                                                                             |                                                                                                            |                                                     |                                           | 470                                              | 000                                                 |                                                   |
| Q <sub>a(ToT)</sub>                                                                                                                                  | Total Gate Charge at 10V                                                                                                                                                                                                                              | V <sub>GS</sub> = 0 to 1                                                                                   | 0V Vpp = 48V                                        | -                                         | 170                                              | 220                                                 | nC                                                |
| Q <sub>g(ToT)</sub><br>Q <sub>a(th)</sub>                                                                                                            | Threshold Gate Charge                                                                                                                                                                                                                                 |                                                                                                            |                                                     | -                                         | 24                                               | 32                                                  | nC                                                |
| Q <sub>g(th)</sub>                                                                                                                                   |                                                                                                                                                                                                                                                       | $V_{GS} = 0$ to 1<br>$V_{GS} = 0$ to 2                                                                     |                                                     | -                                         | -                                                | -                                                   |                                                   |
| $\frac{Q_{g(ToT)}}{Q_{g(th)}}$ $\frac{Q_{gs}}{Q_{gd}}$                                                                                               | Threshold Gate Charge                                                                                                                                                                                                                                 |                                                                                                            |                                                     | -                                         | 24                                               | 32                                                  | nC                                                |
| Q <sub>g(th)</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub>                                                                                             | Threshold Gate Charge<br>Gate-to-Source Gate Charge                                                                                                                                                                                                   |                                                                                                            |                                                     | -                                         | 24<br>56                                         | 32                                                  | nC<br>nC                                          |
| Q <sub>g(th)</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub><br>Switchi                                                                                  | Threshold Gate Charge<br>Gate-to-Source Gate Charge<br>Gate-to-Drain "Miller" Charge<br>ng Characteristics                                                                                                                                            |                                                                                                            |                                                     | -                                         | 24<br>56                                         | 32<br>-<br>-                                        | nC<br>nC<br>nC                                    |
| Q <sub>g(th)</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub><br>Switchi                                                                                  | Threshold Gate Charge<br>Gate-to-Source Gate Charge<br>Gate-to-Drain "Miller" Charge<br>ng Characteristics<br>Turn-On Time                                                                                                                            |                                                                                                            |                                                     | -                                         | 24<br>56<br>24<br>-                              | 32                                                  | nC<br>nC<br>nC<br>nS                              |
| Q <sub>g(th)</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub><br>Switchi<br>t <sub>on</sub>                                                               | Threshold Gate Charge<br>Gate-to-Source Gate Charge<br>Gate-to-Drain "Miller" Charge<br>ng Characteristics<br>Turn-On Time<br>Turn-On Delay                                                                                                           | V <sub>GS</sub> = 0 to 2                                                                                   | V I <sub>D</sub> = 80A                              |                                           | 24<br>56<br>24<br>-<br>45                        | 32<br>-<br>-<br>137                                 | nC<br>nC<br>nC<br>ns                              |
| Q <sub>g(th)</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub><br>Switchi<br>t <sub>on</sub><br>t <sub>d(on)</sub><br>t <sub>r</sub>                       | Threshold Gate Charge         Gate-to-Source Gate Charge         Gate-to-Drain "Miller" Charge         ng Characteristics         Turn-On Time         Turn-On Delay         Rise Time                                                                | V <sub>GS</sub> = 0 to 2                                                                                   | $V$ $I_D = 80A$                                     | -<br>-<br>-<br>-                          | 24<br>56<br>24<br>-<br>45<br>61                  | 32<br>-<br>-<br>137<br>-                            | nC<br>nC<br>nC<br>NS<br>NS                        |
| $\begin{array}{c} Q_{g(th)} \\ Q_{gs} \\ Q_{gd} \\ \end{array}$ Switchi $\begin{array}{c} t_{on} \\ t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ \end{array}$ | Threshold Gate Charge<br>Gate-to-Source Gate Charge<br>Gate-to-Drain "Miller" Charge<br>ng Characteristics<br>Turn-On Time<br>Turn-On Delay                                                                                                           | V <sub>GS</sub> = 0 to 2                                                                                   | $V$ $I_D = 80A$                                     | -<br>-<br>-<br>-<br>-<br>-<br>-           | 24<br>56<br>24<br>-<br>45                        | 32<br>-<br>-<br>137<br>-<br>-                       | nC<br>nC<br>nC<br>ns                              |
| $\begin{array}{c} Q_{g(th)} \\ Q_{gs} \\ Q_{gd} \\ \hline \\ $       | Threshold Gate Charge<br>Gate-to-Source Gate Charge<br>Gate-to-Drain "Miller" Charge<br>ng Characteristics<br>Turn-On Time<br>Turn-On Delay<br>Rise Time<br>Turn-Off Delay                                                                            | V <sub>GS</sub> = 0 to 2                                                                                   | $V$ $I_D = 80A$                                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 24<br>56<br>24<br>-<br>45<br>61<br>80            | 32<br>-<br>-<br>-<br>137<br>-<br>-<br>-<br>-        | nC<br>nC<br>nC<br>ns<br>ns<br>ns<br>ns            |
| $\begin{array}{c} Q_{g(th)} \\ Q_{gs} \\ Q_{gd} \\ \hline \\ $       | Threshold Gate Charge<br>Gate-to-Source Gate Charge<br>Gate-to-Drain "Miller" Charge<br><b>ng Characteristics</b><br>Turn-On Time<br>Turn-On Delay<br>Rise Time<br>Turn-Off Delay<br>Fall Time                                                        | V <sub>GS</sub> = 0 to 2                                                                                   | $V$ $I_D = 80A$                                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 24<br>56<br>24<br>-<br>45<br>61<br>80<br>41      | 32<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-     | nC<br>nC<br>nC<br>ns<br>ns<br>ns<br>ns<br>ns      |
| $Q_{g(th)}$<br>$Q_{gs}$<br>$Q_{gd}$<br><b>Switchi</b><br>$t_{on}$<br>$t_{d(on)}$<br>$t_r$<br>$t_{d(off)}$<br>$t_f$<br>$t_{off}$<br><b>Drain-S</b>    | Threshold Gate Charge<br>Gate-to-Source Gate Charge<br>Gate-to-Drain "Miller" Charge<br><b>ng Characteristics</b><br>Turn-On Time<br>Turn-On Delay<br>Rise Time<br>Turn-Off Delay<br>Fall Time<br>Turn-Off Time<br><b>ource Diode Characteristics</b> | V <sub>GS</sub> = 0 to 2                                                                                   | V $I_D = 80A$<br>$I_D = 80A$ ,<br>$R_{GEN} = 6Ω$    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 24<br>56<br>24<br>-<br>45<br>61<br>80<br>41      | 32<br>-<br>-<br>137<br>-<br>-<br>-<br>-<br>-<br>156 | nC<br>nC<br>nS<br>ns<br>ns<br>ns<br>ns<br>ns      |
| $\begin{array}{c} Q_{g(th)} \\ Q_{gs} \\ Q_{gd} \\ \hline \\ $       | Threshold Gate Charge<br>Gate-to-Source Gate Charge<br>Gate-to-Drain "Miller" Charge<br>ng Characteristics<br>Turn-On Time<br>Turn-On Delay<br>Rise Time<br>Turn-Off Delay<br>Fall Time<br>Turn-Off Time                                              | V <sub>GS</sub> = 0 to 2                                                                                   | V $I_D = 80A$ ,<br>R <sub>GEN</sub> = 6Ω<br>GS = 0V | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 24<br>56<br>24<br>-<br>45<br>61<br>80<br>41      | 32<br>-<br>-<br>137<br>-<br>-<br>-<br>156<br>1.25   | nC<br>nC<br>nC<br>ns<br>ns<br>ns<br>ns<br>ns      |
| $Q_{g(th)}$<br>$Q_{gs}$<br>$Q_{gd}$<br><b>Switchi</b><br>$t_{on}$<br>$t_{d(on)}$<br>$t_r$<br>$t_{d(off)}$<br>$t_f$<br>$t_{off}$<br><b>Drain-S</b>    | Threshold Gate Charge<br>Gate-to-Source Gate Charge<br>Gate-to-Drain "Miller" Charge<br><b>ng Characteristics</b><br>Turn-On Time<br>Turn-On Delay<br>Rise Time<br>Turn-Off Delay<br>Fall Time<br>Turn-Off Time<br><b>ource Diode Characteristics</b> | $V_{GS} = 0 \text{ to } 2$<br>$V_{DD} = 30V,$<br>$V_{GS} = 10V,$<br>$I_{SD} = 80A, V$<br>$I_{SD} = 40A, V$ | V $I_D = 80A$ ,<br>R <sub>GEN</sub> = 6Ω<br>GS = 0V | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 24<br>56<br>24<br>-<br>45<br>61<br>80<br>41<br>- | 32<br>-<br>-<br>137<br>-<br>-<br>-<br>-<br>-<br>156 | nC<br>nC<br>nS<br>ns<br>ns<br>ns<br>ns<br>vs<br>V |


0



ww.onsemi.con 3



www.onsemi.com 4



www.onsemi.com 5

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative