Dual Channel EMI Filter with ESD Protection

Product Description

The CM1485 is a 2 channel pi-style EMI filter array with ESD protection, housed in a 6-lead SOT-563 package. The CM1485 has component values of $12 \text{ pF} - 100 \Omega - 12 \text{ pF}$ per channel. The CM1485 has a cut-off frequency of 125 MHz and can be used in applications with data rates up to 48 Mbps. The parts include ESD diodes on every pin, which provide a very high level of protection for sensitive electronic components that may be subjected to electrostatic discharge (ESD). The ESD protection diodes safely dissipate ESD strikes of ±15 kV, well beyond the maximum requirement of the IEC61000-4-2 international standard. Using the MIL-STD-883 (Method 3015) specification for Human Body Model (HBM) ESD, the pins are protected for contact discharges at greater than ±30 kV.

This device is particularly well-suited for portable electronics (e.g. wireless handsets, PDAs, notebook computers) because of its small package and easy-to-use pin assignments. In particular, the CM1485 is ideal for EMI filtering and protecting data and control lines for the I/O data ports, LCD display and camera interface in mobile handsets.

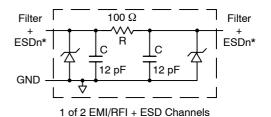
The CM1485 is housed in a small, 6-lead SOT-563 package and is available with lead-free finishing.

Features

- Two Channels of EMI Filtering with Integrated ESD Protection
- Pi-Style EMI Filters in a Capacitor-Resistor-Capacitor (C-R-C) Network
- ±15 kV ESD Protection on Each Channel (IEC 61000-4-2 Level 4, Contact Discharge)
- ±30 kV ESD Protection on Each Channel (HBM)
- Greater than 30 dB Attenuation (Typical) at 1 GHz
- 6-lead SOT-563 Package
- These Devices are Pb-Free and are RoHS Compliant

Applications

- LCD and Camera Data Lines in Mobile Handsets
- I/O Port Protection for Mobile Handsets, Notebook Computers,
- EMI Filtering for Data Ports in Cell Phones, PDAs or Notebook Computers
- Wireless Handsets
- Handheld PCs/PDAs
- LCD and Camera Modules


ON Semiconductor®

http://onsemi.com

SOT-563 **SE SUFFIX** CASE 463A

ELECTRICAL SCHEMATIC

* See Package/Pinout Diagrams for expanded pin information.

MARKING DIAGRAM

N85 = CM1485-02SE = Month Code

= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
CM1485-02SE	SOT-563 (Pb-Free)	5000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

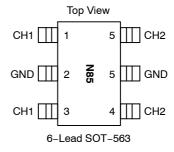

1

Table 1. PIN DESCRIPTIONS

6-Lead SOT-563 Package		
Pin	Name	Description
1	FILTER1	Filter + ESD Channel 1
2	GND	Ground (Note 1)
3	FILTER1	Filter + ESD Channel 1
4	FILTER2	Filter + ESD Channel 2
5	GND	Ground (Note 1)
6	FILTER2	Filter + ESD Channel 2

^{1.} Pin 2 and Pin 5 must be well grounded at the same time.

PACKAGE / PINOUT DIAGRAMS

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Storage Temperature Range	-65 to +150	°C
DC Power per Resistor	100	mW
DC Package Power Rating	0.15	W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. STANDARD OPERATING CONDITIONS

Parameter	Rating	Units
Operating Temperature Range	-40 to +85	°C

Table 4. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R	Resistance		90	100	110	Ω
C _{TOTAL}	Total Channel Capacitance	At 2.5 V DC Reverse Bias, 1 MHz, 30 mV AC	19.2	24.0	28.8	pF
I _{LEAK}	Diode Leakage Current (Reverse Bias)	V _{DIODE} = +3.0 V			1.0	μΑ
V_{BR}	Breakdown Voltage Positive Clamp	I _{LOAD} = 1 mA	6.0	7.0		V
V _{ESD}	In-system ESD Withstand Voltage a) Human Body Model, MIL-STD-883, Method 3015 b) Contact Discharge per IEC 61000-4-2 Level 4	(Note 2)	±30 ±15			kV
R _{DYN}	Dynamic Resistance Positive Negative			2.3 0.9		Ω
f _C	Cut-off Frequency Z_{SOURCE} = 50 Ω , Z_{LOAD} = 50 Ω			125		MHz
A _{1GHz}	Absolute Attenuation @ 1 GHz from 0 dB Level	Z_{SOURCE} = 50 Ω , Z_{LOAD} = 50 Ω , DC Bias = 0 V (Notes 1 and 3)		35		dB
A _{800MHz} – 6GHz	Absolute Attenuation @ 800 MHz to 1 GHz from 0 dB Level	Z_{SOURCE} = 50 Ω , Z_{LOAD} = 50 Ω , DC Bias = 0 V (Notes 1 and 3)		30		dB

^{1.} T_A = 25°C unless otherwise specified.

^{2.} ESD applied to input and output pins with respect to GND, one at a time.

^{3.} Attenuation / RF curves characterized by a network analyzer using microprobes.

PERFORMANCE INFORMATION

Typical Filter Performance (T_A = 25°C, DC Bias = 0 V, 50 Ω Environment)

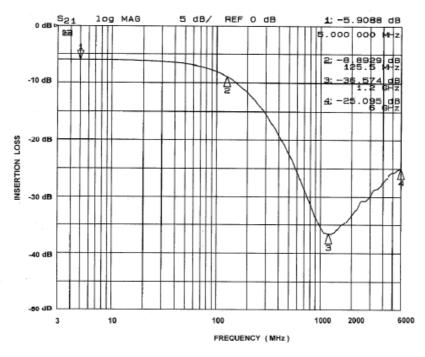


Figure 1. Insertion Loss vs. Frequency (FILTER1 Input to GND)

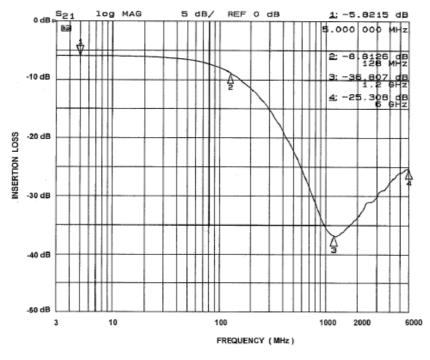


Figure 2. Insertion Loss vs. Frequency (FILTER2 Input to GND)

CM1485

PERFORMANCE INFORMATION (Cont'd)

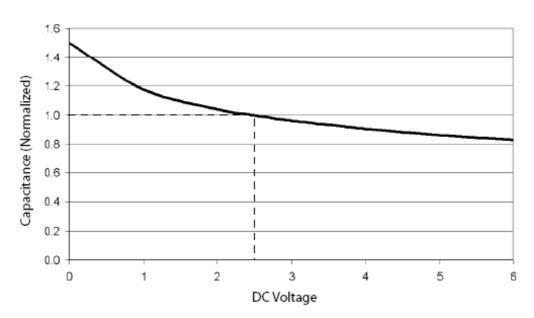
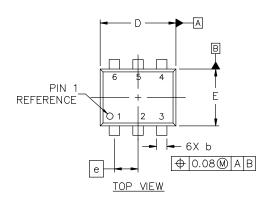
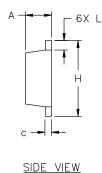
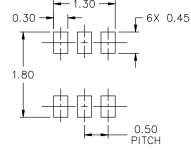


Figure 3. Filter Capacitance vs. Input Voltage (normalized to capacitance at 2.5 V DC and 25°C)




SOT-563-6 1.60x1.20x0.55, 0.50P CASE 463A **ISSUE J**

DATE 15 FEB 2024


NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
- ALL DIMENSION ARE IN MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

DIM	MILLIMETERS			
וועם	MIN.	N□M.	MAX.	
Α	0.50	0.55	0.60	
b	0.17	0.22	0.27	
C	0.08	0.13	0.18	
D	1.50	1.60	1.70	
E	1.10	1.20	1.30	
е	0.50 BSC			
Н	1.50	1.60	1.70	
L	0.10	0.20	0.30	

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. EMITTER 1	PIN 1. EMITTER 1	PIN 1. CATHODE 1
2. BASE 1	2. EMITTER 2	2. CATHODE 1
3. COLLECTOR 2	3. BASE 2	3. ANODE/ANODE 2
4. EMITTER 2	4. COLLECTOR 2	4. CATHODE 2
5. BASE 2	5. BASE 1	5. CATHODE 2
6. COLLECTOR 1	6. COLLECTOR 1	6. ANODE/ANODE 1

STYLE 6: PIN 1. CATHODE 2. ANODE

3. CATHODE

4. CATHODE 5. CATHODE

CATHODE

RECOMMENDED	MOLINITING	FOOTPRINT*
KECOMIMENDED	MOONTING	LOO INKINI.

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

STYLE 7: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. ANODE 6. CATHODE	STYLE 8: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SUURCE 5. DRAIN 6. DRAIN	STYLE 9: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1
--	--	--

STYLE 5

PIN 1. CATHODE

2. CATHODE 3. ANDDE 4. ANDDE 5. CATHODE

GENERIC MARKING DIAGRAM*

XX = Specific Device Code M = Month Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

PIN 1. CATHODE 1	PIN 1. EMITTER 2
2. N/C	2. BASE 2
3. CATHODE 2	3. COLLECTOR 1
4. ANODE 2	4. EMITTER 1
5. N/C	5. BASE 1
6. AN□DE 1	6. COLLECTOR 2

STYLE 11:

STYLE 4: PIN 1. COLLECTOR

3. BASE 4. EMITTER 5. COLLECTOR

STYLE 10:

2. COLLECTOR

COLLECTOR

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON11126D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION: SOT-563-6 1.60x1.20x0.55, 0.50P **PAGE 1 OF 1**

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales