To learn more about ON Semiconductor, please visit our website at
www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
BAV23S
Small Signal Diode

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAV23S</td>
<td>L30</td>
<td>SOT-23 3L</td>
<td>Tape and Reel</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{RRM}</td>
<td>Maximum Repetitive Reverse Voltage</td>
<td>250</td>
<td>V</td>
</tr>
<tr>
<td>$I_{F(AV)}$</td>
<td>Average Rectified Forward Current</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>I_{FSM}</td>
<td>Non-Repetitive Peak Forward Surge Current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Width = 1.0 microsecond</td>
<td>9.0</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Pulse Width = 100 microsecond</td>
<td>3.0</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature Range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating Junction Temperature</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_D</td>
<td>Power Dissipation</td>
<td>350</td>
<td>mW</td>
</tr>
<tr>
<td>R_{JUA}</td>
<td>Thermal Resistance, Junction-to-Ambient</td>
<td>357</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Electrical Characteristics

Values are at $T_A = 25^\circ\text{C}$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV</td>
<td>Breakdown Voltage</td>
<td>$I_R = 100 , \mu\text{A}$</td>
<td>250</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VF</td>
<td>Forward Voltage</td>
<td>$I_F = 100 , \text{mA}$</td>
<td></td>
<td>1.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_F = 200 , \text{mA}$</td>
<td></td>
<td>1.25</td>
<td>V</td>
</tr>
<tr>
<td>IR</td>
<td>Reverse Leakage</td>
<td>$V_R = 250 , \text{V}$</td>
<td>100</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_R = 250 , \text{V}, T_A = 150^\circ\text{C}$</td>
<td></td>
<td>100</td>
<td>\mu\text{A}</td>
</tr>
<tr>
<td>tR</td>
<td>Reverse Recovery Time</td>
<td>$I_F = I_R = 30 , \text{mA}, I_{RR} = 3.0 , \text{mA}, R_L = 100 , \Omega$</td>
<td></td>
<td>50</td>
<td>ns</td>
</tr>
</tbody>
</table>
Typical Performance Characteristics

Figure 1. Reverse Voltage vs. Reverse Current
 \(V_R - 1.0 \) to \(100 \mu A \)

Figure 2. Reverse Current vs. Reverse Voltage
 \(I_R - 55 \) to \(205 \) V

Figure 3. Reverse Current vs. Reverse Voltage
 \(I_R - 180 \) to \(255 \) V

Figure 4. Forward Voltage vs. Forward Current
 \(V_F - 1.0 \) to \(100 \mu A \)

Figure 5. Forward Voltage vs. Forward Current
 \(V_F - 0.1 \) to \(10 \) mA

Figure 6. Forward Voltage vs. Forward Current
 \(V_F - 10 \) to \(800 \) mA

General Rule: The Reverse Current of a diode will approximately double for every ten (10) degrees Celsius increase in temperature.

General Rule: The Forward Current of a diode will approximately double for every ten (10) degrees Celsius increase in temperature.
Typical Performance Characteristics (Continued)

Figure 7. Forward Voltage vs. Ambient Temperature
\[V_F = 1.0 \mu A - 10 \text{ mA (-40 to +80°C)} \]

Figure 8. Capacitance vs. Reverse Voltage

Figure 9. Power Derating Curve

Figure 10. Average Rectified Current \(I_O \) vs. Ambient Temperature \(T_A \)

Figure 11. Reverse Recovery Time vs. Reverse Recovery Current \(I_{rr} \)

\[I_{rr} = 30 \text{ mA, } \text{R}_{loop} = 100 \text{ Ohms} \]
Physical Dimensions

Figure 12. 3-LEAD, SOT23, JEDEC TO-236, LOW PROFILE
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

- AcuPower™
- AttitudeEngine™
- Avinda™
- AX-CAP™
- BHSIC™
- Build It Now™
- CorePLUS™
- CorePOWER™
- CROSSVOLT™
- CTL™
- Current Transfer Logic™
- DEUXPEED™
- Dual Cool™
- Ecoline™
- EfficienMax™
- ESBC™
- Facil™
- Faith Semiconductor™
- FACT Quiet Series™
- FACT™
- FAST™
- FastvCore™
- FETBench™
- FFS™
- F-PFS™
- FRET™
- Global Power Resource™
- GreenBridge™
- Green FPS™
- Green FPS™ e-Series™
- Gmx™
- GTO™
- IntelliMAX™
- ISOPLANAR™
- Making Small Speakers Sound Louder and Better™
- MegaBuck™
- MicroCOUPLER™
- MicroFE™
- MicroPak™
- MicroPak2™
- MillerDrive™
- MotionMax™
- MotionGrid™
- MT™
- MVN™
- mWSaver™
- OptoH™
- OPTOLOGIC™
- OPTOPLANAR®
- PowerTrench®
- PowerXS™
- Programmable Active Droop™
- QFET®
- QS™
- Quiet Series™
- RapidConfigure™
- Saving the world, 1mW/KW at a time™
- SignalWise™
- SmartMax™
- SMART START™
- Solutions for Your Success™
- SPM™
- STEALTH™
- SuperFET™
- SuperSOT™
- SuperSOT™-6
- SuperSOT™-8
- SupreMOS®
- SyncFE™
- Sync-Lock™
- Editors
- TinyBoost™
- TinyBuck™
- TinyCalc™
- TinyLogic™
- TINYPOT™
- TinyPower™
- TinyPWM™
- TransSiC™
- TriFault Detect™
- TRUECURRENT™
* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Definition of Terms</th>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
<td></td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
<td></td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
<td></td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
<td></td>
</tr>
</tbody>
</table>

Rev. I73