2N6338, 2N6341

High-Power NPN Silicon Transistors

... designed for use in industrial–military power amplifier and switching circuit applications.
- High Collector–Emitter Sustaining Voltage –
 \[V_{CEO(sus)} = 100 \text{ Vdc (Min)} - 2N6338 \]
 \[= 150 \text{ Vdc (Min)} - 2N6341 \]
- High DC Current Gain –
 \[h_{FE} = 30 - 120 @ I_C = 10 \text{ Adc} \]
 \[= 12 \text{ (Min)} @ I_C = 25 \text{ Adc} \]
- Low Collector–Emitter Saturation Voltage –
 \[V_{CE(sat)} = 1.0 \text{ Vdc (Max)} @ I_C = 10 \text{ Adc} \]
- Fast Switching Times @ I_C = 10 Adc
 \[t_r = 0.3 \text{ ms (Max)} \]
 \[t_f = 1.0 \text{ ms (Max)} \]
 \[t_f = 0.25 \text{ ms (Max)} \]
- Pb–Free Packages are Available

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>2N6338</th>
<th>2N6341</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Base Voltage</td>
<td>V_CB</td>
<td>120</td>
<td>180</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Emitter Voltage</td>
<td>V_CE</td>
<td>100</td>
<td>150</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Voltage</td>
<td>V_EB</td>
<td>6.0</td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current</td>
<td>I_C</td>
<td>25</td>
<td></td>
<td>Adc</td>
</tr>
<tr>
<td>Continuous</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Current</td>
<td>I_B</td>
<td>10</td>
<td></td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation</td>
<td>P_D</td>
<td>200</td>
<td>1.14</td>
<td>W</td>
</tr>
<tr>
<td>@ T_C = 25°C Derate</td>
<td></td>
<td></td>
<td></td>
<td>W/°C</td>
</tr>
<tr>
<td>above 25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating and Storage</td>
<td></td>
<td>–65 to 200</td>
<td>–65 to 200</td>
<td>°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance,</td>
<td>(\theta_{JC})</td>
<td>0.875</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction to Case</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

*Indicates JEDEC Registered Data.
ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector–Emitter Sustaining Voltage (1)</td>
<td>V<sub>CE(sus)</sub></td>
<td>100</td>
<td>150</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Cutoff Current</td>
<td>I<sub>CES</sub></td>
<td>10</td>
<td>50</td>
<td>μAdc</td>
</tr>
<tr>
<td>Collector Cutoff Current (V<sub>CE</sub> = Rated V<sub>CEO</sub>, V<sub>BE(off)</sub> = 1.5 Vdc)</td>
<td>I<sub>CBO</sub></td>
<td>10</td>
<td>10</td>
<td>μAdc</td>
</tr>
<tr>
<td>Collector Cutoff Current (V<sub>CE</sub> = 150°C)</td>
<td>I<sub>EBO</sub></td>
<td>100</td>
<td></td>
<td>μAdc</td>
</tr>
<tr>
<td>ON CHARACTERISTICS (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Current Gain</td>
<td>h<sub>FE</sub></td>
<td>50</td>
<td>120</td>
<td>–</td>
</tr>
<tr>
<td>Collector Emitter Saturation Voltage</td>
<td>V<sub>CE(sat)</sub></td>
<td>1.0</td>
<td>1.8</td>
<td>Vdc</td>
</tr>
<tr>
<td>Base–Emitter Saturation Voltage</td>
<td>V<sub>BE(sat)</sub></td>
<td>1.8</td>
<td>2.5</td>
<td>Vdc</td>
</tr>
<tr>
<td>Base–Emitter On Voltage (I<sub>C</sub> = 10 Adc, V<sub>CE</sub> = 2.0 Vdc)</td>
<td>V<sub>BE(on)</sub></td>
<td>1.8</td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>DYNAMIC CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current–Gain – Bandwidth Product (2)</td>
<td>f<sub>T</sub></td>
<td>40</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Output Capacitance (V<sub>CE</sub> = 10 Vdc, I<sub>E</sub> = 0, f = 0.1 MHz)</td>
<td>C<sub>ob</sub></td>
<td>300</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>SWITCHING CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time (V<sub>CC</sub> = 80 Vdc, I<sub>C</sub> = 10Adc, I<sub>B1</sub> = 1.0 Adc, V<sub>BE(off)</sub> = 6.0 Vdc)</td>
<td>t<sub>r</sub></td>
<td>0.3</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Storage Time (V<sub>CC</sub> = 80 Vdc, I<sub>C</sub> = 10 Adc, I<sub>B1</sub> = I<sub>B2</sub> = 1.0 Adc)</td>
<td>t<sub>s</sub></td>
<td>1.0</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Fall Time (V<sub>CC</sub> = 80 Vdc, I<sub>C</sub> = 10 Adc, I<sub>B1</sub> = I<sub>B2</sub> = 1.0 Adc)</td>
<td>t<sub>f</sub></td>
<td>0.25</td>
<td></td>
<td>μs</td>
</tr>
</tbody>
</table>

*Indicates JEDEC Registered Data.

1) Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

2) f_T = |h_{FE}| • f_{test}

http://onsemi.com
There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC−VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on TJ(pk) = 200°C; TC is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided TJ(pk) ≤ 200°C. TJ(pk) may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.
Figure 6. Turn-Off Time

Figure 7. Capacitance
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

TO-204 (TO-3)
CASE 1-07
ISSUE Z
DATE 05/18/1988

NOTES:
2. CONTROLLING DIMENSION: INCH.
3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

SCALE 1:1

- **A**: 1.550 REF 39.37 REF
- **B**: 1.050 3.67
- **C**: 0.250 0.335 6.35 8.51
- **D**: 0.038 0.043 0.97 1.09
- **E**: 0.055 0.070 1.40 1.77
- **G**: 0.430 BSC 10.92 BSC
- **H**: 0.215 BSC 5.46 BSC
- **K**: 0.440 0.480 11.18 12.19
- **L**: 0.665 BSC 16.89 BSC
- **N**: 0.830 21.08
- **Q**: 0.151 0.165 3.84 4.19
- **U**: 1.187 BSC 30.15 BSC
- **V**: 0.131 0.188 3.33 4.77

STYLE 1:
- PIN 1. BASE
- PIN 2. Emitter
- CASE: Collector

STYLE 2:
- PIN 1. BASE
- PIN 2. Collector
- CASE: Emitter

STYLE 3:
- PIN 1. GATE
- PIN 2. Source
- CASE: Drain

STYLE 4:
- PIN 1. GROUND
- PIN 2. INPUT
- CASE: OUTPUT

STYLE 5:
- PIN 1. CATHODE
- PIN 2. EXTERNAL TRIP/Delay
- CASE: ANODE

STYLE 6:
- PIN 1. GATE
- PIN 2. CATHODE
- CASE: Collector

STYLE 7:
- PIN 1. ANODE
- PIN 2. OPEN
- CASE: CATHODE

STYLE 8:
- PIN 1. CATHODE #1
- PIN 2. CATHODE #2
- CASE: ANODE

STYLE 9:
- PIN 1. ANODE #1
- PIN 2. ANODE #2
- CASE: CATHODE

ON Semiconductor and **ON** are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.